Welcome to LookChem.com Sign In|Join Free

CAS

  • or

827-54-3

Post Buying Request

827-54-3 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

827-54-3 Usage

General Description

2-Vinylnaphthalene, also known as 2-vinyl-1-naphthalene, is a chemical compound with the formula C12H10. It is a colorless liquid with a sweet, floral odor and is used in the production of plastics and resins. 2-Vinylnaphthalene is a vinylated naphthalene, meaning it has a vinyl group attached to the naphthalene ring. It is used as a precursor in the synthesis of various polymers and as a monomer for the production of vinyl naphthalene resins. It is also used as an intermediate in the manufacturing of pharmaceuticals and fragrances. However, 2-Vinylnaphthalene is also a potential irritant and can cause skin and eye irritation upon contact, as well as harmful effects if inhaled.

Check Digit Verification of cas no

The CAS Registry Mumber 827-54-3 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 8,2 and 7 respectively; the second part has 2 digits, 5 and 4 respectively.
Calculate Digit Verification of CAS Registry Number 827-54:
(5*8)+(4*2)+(3*7)+(2*5)+(1*4)=83
83 % 10 = 3
So 827-54-3 is a valid CAS Registry Number.
InChI:InChI=1/C12H10/c1-2-10-7-8-11-5-3-4-6-12(11)9-10/h2-9H,1H2

827-54-3 Well-known Company Product Price

  • Brand
  • (Code)Product description
  • CAS number
  • Packaging
  • Price
  • Detail
  • Alfa Aesar

  • (A12470)  2-Vinylnaphthalene, 97%   

  • 827-54-3

  • 5g

  • 506.0CNY

  • Detail
  • Alfa Aesar

  • (A12470)  2-Vinylnaphthalene, 97%   

  • 827-54-3

  • 25g

  • 1854.0CNY

  • Detail
  • Aldrich

  • (V2909)  2-Vinylnaphthalene  95%

  • 827-54-3

  • V2909-5G

  • 1,600.56CNY

  • Detail
  • Aldrich

  • (V2909)  2-Vinylnaphthalene  95%

  • 827-54-3

  • V2909-25G

  • 5,792.67CNY

  • Detail
  • Aldrich

  • (453870)  2-Vinylnaphthalene  optical grade, 98%

  • 827-54-3

  • 453870-1G

  • 1,491.75CNY

  • Detail

827-54-3Relevant articles and documents

Functionalized styrene synthesis via palladium-catalyzed C[sbnd]C cleavage of aryl ketones

Dai, Hui-Xiong,Wang, Xing,Wang, Zhen-Yu,Xu, Hui,Zhang, Xu

supporting information, (2022/03/31)

We report herein the synthesis of functionalized styrenes via palladium-catalyzed Suzuki–Miyaura cross-coupling reaction between aryl ketone derivatives and potassium vinyltrifluoroborate. The employment of pyridine-oxazoline ligand was the key to the cleavage of unstrained C[sbnd]C bond. A variety of functional groups and biologically important moleculars were well tolerated. The orthogonal Suzuki–Miyaura coupling demonstrated the synthetic practicability.

Palladium-Catalyzed Benzylic Silylation of Diarylmethyl Carbonates with Silylboranes under Base-Free Conditions

Asai, Kento,Hirano, Koji,Miura, Masahiro

supporting information, (2022/02/19)

A palladium-catalyzed benzylic silylation of diarylmethyl carbonates with silylboranes has been developed. The reaction proceeds smoothly even under external base-free conditions, and the corresponding benzylic silanes are formed in good to high yields. The obtained benzyl silane derivatives can work as the benzylic nucleophiles by the action of a suitable fluoride source and react with some carbon electrophiles to deliver the corresponding benzylic C?C cross-coupled products. Additionally, while still preliminary, the allylic silylation of the isoelectronic allylic carbonates is also achieved.

Nickel-Catalyzed Reductive Cross-Coupling of Aryl Bromides with Vinyl Acetate in Dimethyl Isosorbide as a Sustainable Solvent

Huang, Xia,Jin, Jian,Lei, Chuanhu,Su, Mincong

supporting information, (2022/01/15)

A nickel-catalyzed reductive cross-coupling has been achieved using (hetero)aryl bromides and vinyl acetate as the coupling partners. This mild, applicable method provides a reliable access to a variety of vinyl arenes, heteroarenes, and benzoheterocycles, which should expand the chemical space of precursors to fine chemicals and polymers. Importantly, a sustainable solvent, dimethyl isosorbide, is used, making this protocol more attractive from the point of view of green chemistry.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 827-54-3