Welcome to LookChem.com Sign In | Join Free

Chemical Reaction - Basic Chemical -

Home > Chemical Encyclopedia > Basic Chemical > Chemical Reaction
  • Wagner-Meerwein Rearrangement
  • Wagner-Meerwein Rearrangement G. Wagner, J. Russ. Phys. Chem. Soc. 31, 690 (1899); H. Meerwein, Ann. 405, 129 (1914). -to-carbon migration of alkyl, ary
  • McMurry Coupling Reaction
  • McMurry Coupling Reaction J. E. McMurry, M. P. Fleming, J. Am. Chem. Soc. 96, 4708 (1974); S. Tyrlik, I. Wolochowicz, Bull. Soc. Chim. France 1973, 2147; T. Mukaiyama et a
  • McLafferty Rearrangement
  • McLafferty Rearrangement F. W. McLafferty, Anal. Chem. 31, 82 (1959). Electron-impact-induced cleavage of carbonyl compounds having a hydrogen in the &g
  • McFadyen-Stevens Reaction
  • McFadyen-Stevens Reaction J. S. McFadyen, T. S. Stevens, J. Chem. Soc. 1936, 584. Base-catalyzed thermal decomposition of acylbenzenesulfonylhydrazines
  • Martinet Dioxindole Synthesis
  • Martinet Dioxindole Synthesis A. Guyot, J. Martinet, Compt. Rend. 156, 1625 (1913). Formation of derivatives of dioxindole from esters of mesoxalic acid
  • Marschalk Reaction
  • Marschalk Reaction C. Marschalk et al., Bull. Soc. Chim. France 3, 1545 (1936). dithionite reduction of 1-hydroxy- or aminoanthraquinones to their leuc
  • Mannich Reaction
  • Mannich Reaction C. Mannich, W. Krosche, Arch. Pharm. 250, 647 (1912). Reaction of compounds having an active hydrogen with non-enolizable aldehydes and
  • Malonic Ester Syntheses
  • Malonic Ester Syntheses Syntheses based on the strongly activated methylene group of malonic esters which on reaction with sodium ethoxide form a resonance-stabilized ion
  • Malaprade Reaction
  • Malaprade Reaction (Periodic Acid Oxidation) L. Malaprade, Bull. Soc. Chim. France [4] 43, 683 (1928); Compt. Rend. 186, 382 (1928). Compounds containin
  • Madelung Synthesis
  • Madelung Synthesis W. Madelung, Ber. 45, 1128 (1912). Formation of derivatives by intramolecular cyclization of an N-(2-alkylphenyl)alkanamide by a str
  • Lossen Rearrangement
  • Lossen Rearrangement W. Lossen, Ann. 161, 347 (1872); 175, 271, 313 (1874). Conversion of a hydroxamic acid to an isocyanate via the intermediacy of its
  • Lobry de Bruyn-van Ekenstein Transformation
  • Lobry de Bruyn-van Ekenstein Transformation C. A. Lobry de Bruyn, Rec. Trav. Chim. 14, 150 (1895); C. A. Lobry de Bruyn, W. A. van Ekenstein, ibid. 195, 203; 16, 262 (1897
  • Leuckart Thiophenol Reaction
  • Leuckart Reaction R. Leuckart, J. Prakt. Chem. [2] 41, 179 (1890). Decomposition of diazoxanthates, by warming gently in faintly acidic cuprous media,
  • Letts Nitrile Synthesis
  • Letts Nitrile Synthesis E. A. Letts, Ber. 5, 669 (1872). Formation of nitriles by heating aromatic carboxylic acids with metal thiocyanates:
  • Lebedev Process
  • Lebedev Process S. V. Lebedev, Zh. Obshch. Khim. 3, 698 (1933). Formation of butadiene from ethanol by catalytic pyrolysis. The catalysts used are mixtu
  • Ladenburg Rearrangement
  • Ladenburg Rearrangement A. Ladenburg, Ber. 16, 410 (1883); Ann. 247, 1 (1888). Thermal rearrangement of an alkyl- or benzylpyridinium halide to an alkyl
  • Kuhn-Winterstein Reaction
  • Kuhn-Winterstein Reaction R. Kuhn, A. Winterstein, Helv. Chim. Acta 11, 87 (1928). Conversion of 1,2-glycols into trans olefins by reaction with diphosp
  • Kucherov Reaction
  • Kucherov Reaction M. Kucherov, Ber. 14, 1540 (1881). Hydration of acetylenic hydrocarbons with dilute sulfuric acid in the presence of mercuric sulfate
  • Kröhnke Pyridine Synthesis
  • Kröhnke Synthesis W. Zecher, F. Kröhnke, Ber. 94, 690, 698 (1961); eidem, Angew. Chem. Int. Ed. 1, 626 (1962). 1,4-Michael addition, q.v., of
  • Kröhnke Oxidation
  • Kröhnke Oxidation F. Kröhnke et al., Ber. 69, 2006 (1936); 71, 2583 (1938); 72, 440 (1939). Transformation of activated halides into aldehydes
Periodic Table
    Hot Products