We also altered the carbon skeleton of the substrates such
that the alkyne was linked via the indole 3-position, rather
than the N-atom. 6-exo-dig cyclisation proceeded as before to
give the structural isomer 7u in 64% yield as a single geometric
isomer (assigned as Z by analogy).
not occur): J. A. Tunge and L. N. Foresee, Organometallics, 2005,
24, 6440.
3 Reviews: (a) T. Kitamura, Eur. J. Org. Chem., 2009, 1111;
(b) C. Nevado and A. M. Echavarren, Synthesis, 2005, 167;
(c) C. Jia, T. Kitamura and Y. Fujiwara, Acc. Chem. Res., 2001,
34, 633.
4 Recent examples: (a) J. Mo and P. H. Lee, Org. Lett., 2010,
12, 2570; (b) D. J. Schipper, M. Hutchinson and K. Fagnou,
J. Am. Chem. Soc., 2010, 132, 6910; (c) K. Komeyama, R. Igawa
and K. Takaki, Chem. Commun., 2010, 46, 1748; (d) T.-S. Jiang,
R.-Y. Tang, X.-G. Zhang, X.-H. Li and J.-H. Li, J. Org. Chem.,
2009, 74, 8834; (e) S. Suarez-Pantiga, D. Palomas, E. Rubio and
J. M. Gonzalez, Angew. Chem., Int. Ed., 2009, 48, 7857;
(f) N. Chernyak and V. Gevorgyan, Adv. Synth. Catal., 2009,
351, 1101; (g) H.-H. Lu, H. Liu, W. Wu, X.-F. Wang, L.-Q. Lu and
W.-J. Xiao, Chem.–Eur. J., 2009, 15, 2742; (h) N. Chernyak and
V. Gevorgyan, J. Am. Chem. Soc., 2008, 130, 5636.
5 (a) D. G. Pintori and M. F. Greaney, J. Am. Chem. Soc., 2011,
133, 1209; (b) F. Zhang and M. F. Greaney, Org. Lett., 2010,
12, 4745; (c) F. Zhang and M. F. Greaney, Angew. Chem. Int. Ed.,
2010, 49, 2768.
6 A. B. Flynn and W. W. Ogilvie, Chem. Rev., 2007, 107, 4698.
7 P. Sehnal, R. J. K. Taylor and I. J. S. Fairlamb, Chem. Rev., 2010,
110, 824.
8 Seminal work: (a) R. Grigg, P. Kennewell, A. Teasdale and
V. Sridharan, Tetrahedron Lett., 1993, 34, 153; (b) S. Brown,
S. Clarkson, R. Grigg and V. Sridharan, Tetrahedron Lett., 1993,
34, 157; (c) R. Grigg, V. Loganathan and V. Sridharan,
Tetrahedron Lett., 1996, 37, 3399; (d) R. C. Larock, M. J. Doty,
Q. Tian and J. M. Zenner, J. Org. Chem., 1997, 62, 7536. See also:
G. Dyker, J. Org. Chem., 1993, 58, 234.
9 Recent examples: (a) N. Chernyak, D. Tilly, Z. Li and
V. Gevorgyan, Chem. Commun., 2010, 46, 150; (b) D. Chernyak
and V. Gevorgyan, Org. Lett., 2010, 12, 5558; (c) S. Jaegli,
J. Dufour, H.-l. Wei, T. Piou, X.-H. Duan, J.-P. Vors,
L. Neuville and J. Zhu, Org. Lett., 2010, 12, 4498;
(d) N. Chernyak and V. Gevorgyan, Adv. Synth. Catal., 2009,
351, 1101; (e) D.-J. Tang, B.-X. Tang and J.-H. Li, J. Org. Chem.,
2009, 74, 6749; (f) S. Tang, P. Peng, P. Zhong and J.-H. Li, J. Org.
Chem., 2008, 73, 5476; (g) A. Pinto, L. Neuville and J. Zhu, Angew.
Chem., Int. Ed., 2007, 46, 3291; (h) A. Pinto, L. Neuville,
P. Retailleau and J. Zhu, Org. Lett., 2006, 8, 4927.
A number of different mechanisms may be envisaged for
the reaction. The Z-geometry of the alkene group for almost
all substrates, however, is a key feature and implicates alkyne
syn-carbopalladation at the heart of the C–C bond forming
events. Two possible pathways are set out in Scheme 3. Path A
involves direct indole palladation at C213,14 with Pd(OAc)2 to
afford 8, which can then undergo intramolecular 6-exo-dig
carbopalladation. Trapping of the alkenyl Pd(II) intermediate
9 with the iodonium salt then gives the Z-product 7, via Pd(IV)
intermediate 10. This mechanism varies from that of classic
Fujiwara hydroarylation, where initial SEAr addition of the
C–H component to the alkyne would afford an E-alkenyl Pd
intermediate, something not observed in our system. However,
the basic reaction conditions we employ are quite different to
the acidic, ionising character of a typical Fujiwara reaction.15
Path B reverses the order of C–C bond formation, and begins
with intermolecular alkyne carbopalladation using ArPd(OAc)2X
to provide the Z-alkene intermediate 11. Intramolecular C–H
activation at the indole 2-position then gives 12, which reductively
eliminates Pd(II) to access the tetra-substituted alkene products.
This sequence requires the alkyne carbopalladation to be
either regioselective for 11 (Pd on the ‘internal’ position next
to the aryl ring), or for this process to be reversible. Little is
known about alkyne carbopalladation for Pd(IV) species, in
contrast to the analogous reaction with ArPd(II)X complexes,16
and further work is necessary to clarify the differences in the
proposed mechanistic pathways.17
We have developed a novel tetra-substituted alkene synthesis
that comprises a diaryliodonium salt plus alkyne and indole
C–H components. The reaction proceeds under very mild
conditions using Pd(II)/Pd(IV) catalysis, is highly selective for
the Z-alkene isomer and shows excellent substrate scope
around each of the reacting functional groups. Further studies
to apply this reaction to biologically active targets are underway
in our laboratory.
10 N. R. Deprez and M. S. Sanford, Inorg. Chem., 2007, 46, 1924.
11 N. R. Deprez, D. Kalyani, A. Krause and M. S. Sanford, J. Am.
Chem. Soc., 2006, 128, 4972.
12 R. J. Phipps, N. P. Grimster and M. J. Gaunt, J. Am. Chem. Soc.,
2008, 130, 8172.
13 (a) N. P. Grimster, C. D. Godfrey and M. J. Gaunt, Angew. Chem.,
Int. Ed., 2005, 44, 3125; (b) B. S. Lane, M. A. Brown and D. Sames,
J. Am. Chem. Soc., 2005, 127, 8050; (c) F. Bellina, C. Calandri,
S. Cauteruccio and R. Rossi, Tetrahedron, 2007, 63, 1970;
(d) N. Lebrasseur and I. Larrosa, J. Am. Chem. Soc., 2008,
130, 2926; (e) S. Potavathri, K. C. Pereira, S. I. Gorelsky,
A. Pike, A. P. LeBris and B. DeBoef, J. Am. Chem. Soc., 2010,
132, 14676.
14 A kinetic isotope effect of 1.2 was measured for reaction for 5a
deuterated at the indole 2-position (supporting information).
15 C–H Activation and subsequent carbopalladation has been
implicated in Gevorgyan’s intramolecular hydroarylation of
o-alkynyl biaryls under neutral conditions, see ref. 4h.
16 S. Cacchi and G. Fabrizi, in Handbook of Organopalladium Chemistry
for Organic Synthesis, ed. E. Negishi and A. de Meijere, Wiley, NY,
2002, vol. 1, p. 1335.
We thank the EU and the EPSRC funding (Studentship to
LL, Leadership Fellowship to MFG) and the EPSRC mass
spectrometry service at the University of Swansea. Dr Fraser
White is thanked for X-ray crystallography. Dr Gemma
Veitch is thanked for preliminary work in the area.
Notes and references
1 C. Jia, D. Piao, J. Oyamada, W. Lu, T. Kitamura and Y. Fujiwara,
Science, 2000, 287, 1992.
2 Subsequent mechanistic studies, prompted by the exclusive cis
selectivity of the reaction with terminal alkynes, suggest an initial
SEAr step as the most likely pathway (i.e. arene palladation does
17 Trapping experiments to capture 8 and/or 9 in path A with an
external Heck acceptor were unsuccessful, cf. ref. 5a.
c
7994 Chem. Commun., 2011, 47, 7992–7994
This journal is The Royal Society of Chemistry 2011