Journal of the American Chemical Society
Page 12 of 14
Radical Polymerization Driven by Visible Light. Science 2016,
(28) For details and experimental proof for our revised catalyst
structure 3DPAFIPN, please see supporting information.
352, 1082– 1086. (b) Poelma, S. O.; Burnett, G. L.; Discekici, E.
H.; Mattson, K. M.; Treat, N. J.; Luo, Y.; Hudson, Z. M.; Shankel,
S. L.; Clark, P. G.; Kramer, J. W.; Hawker, C. J.; Read de Alaniz,
J. Chemoselective Radical Dehalogenation and C–C Bond Forma-
tion on Aryl Halide Substrates Using Organic Photoredox Cata-
lysts. J. Org. Chem. 2016, 81, 7155–7160. (c) Du, Y.; Pearson, R.
M.; Lim, C. H.; Sartor, S. M.; Ryan, M. D.; Yang, H.; Damrauer,
N. H.; Miyake, G. M. Strongly Reducing Visible Light Organic
Photoredox Catalysts as Sustainable Alternatives to Precious
Metals. Chem. Eur. J. 2017, 23, 10962–10968. For a very recent
study in tailoring phenoxazines as reducing photoredox catalysts,
see: (d) McCarthy, B. G.; Pearson, R. M.; Lim, C.-H.; Sartor, S.
M.; Damrauer, N. H.; Miyake, G. M. Structure–Property Rela-
tionships for Tailoring Phenoxazines as Reducing Photoredox
Catalysts. J. Am. Chem. Soc. 2018, 140, 5088–5101.
1
2
3
4
5
6
7
8
(29) For a selection of recent applications, see: (a) Huang, H.;
Yu, C.; Zhang, Y.; Zhang, Y.; Mariano, P. S.; Wang, W. Chemo-
and Regioselective Organo-Photoredox Catalyzed Hydroformyla-
tion of Styrenes via a Radical Pathway. J. Am. Chem. Soc. 2017,
139, 9799−9802. (b) Matsui, J. K.; Primer, D. N.; Molander, G.
A. Metal-free C–H alkylation of heteroarenes with alkyltrifluoro-
borates: a general protocol for 1°, 2° and 3° alkylation. Chem. Sci.
2017, 8, 3512−3522. (c) Stache, E. E.; Rovis, T.; Doyle, A. G.
Dual Nickel- and Photoredox-Catalyzed Enantioselective De-
symmetrization of Cyclic meso-Anhydrides. Angew. Chem. Int.
Ed. 2017, 56, 3679−3683. (d) Lévêque, C.; Chenneberg, L.;
Corcé, V.; Ollivier, C.; Fensterbank, L. Organic photoredox ca-
talysis for the oxidation of silicates: applications in radical synthe-
sis and dual catalysis. Chem. Commun. 2016, 52, 9877−9880.
(e) Loh, Y.Y.; Nagao, K.; Hoover, A. J; Hesk, D.; Rivera, N. R.;
Colletti, S. L.; Davies, I. W.; MacMillan, D. W. C. Photoredox-
catalyzed deuteration and tritiation of pharmaceutical compounds.
Science 2017, 358, 1182−1187. (f) Meng, Q.-Y.; Wang, S.; Huff,
G. S.; König, B. Ligand-Controlled Regioselective Hydrocarbo-
xylation of Styrenes with CO2 by Combining Visible Light and
Nickel Catalysis. J. Am. Chem. Soc. 2018, 140, 3198−3201.
(g) Dumoulin, A.; Matsui, J. K.; Gutiérrez-Bonet, A.; Molander,
G. A. Synthesis of Non-Classical Arylated C-Saccharides through
Nickel/Photoredox Dual Catalysis. Angew. Chem., Int. Ed. 2018,
57, 6614−6618. (h) Sherwood, T. C; Li, N.; Yazdani, A. N.; Dhar,
T. G. M. Organocatalyzed, Visible-Light Photoredox-Mediated,
One-Pot Minisci Reaction Using Carboxylic Acids via
N-(Acyloxy)phthalimides. J. Org. Chem. 2018, 83, 3000−3012.
(i) Morcillo, S. P.; Dauncey, E. M.; Kim, J. H.; Douglas, J. J.;
Sheikh, N. S.; Leonori, D. Photoinduced Remote Functionalizati-
on of Amides and Amines Using Electrophilic Nitro-
gen‐Radicals. Angew. Chem. Int. Ed. 2018, 57, 12945−12949.
(30) Im, Y.; Kim, M.; Cho, Y. J.; Seo, J.-A.; Yook, K. S.; Lee,
J. Y. Molecular Design Strategy of Organic Thermally Activated
Delayed Fluorescence Emitters. Chem. Mater. 2017, 29,
1946−1963.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(20) Rybicka-Jasinska, K.; Shan, W.; Zawada, K.; Kadish, K.
M.; Gryko, D. Porphyrins as Photoredox Catalysts: Experimental
and Theoretical Studies J. Am. Chem. Soc. 2016, 138, 15451–
15458.
(21) (a) Martiny, M.; Steckhan, E.; Esch, T. Cycloaddition Re-
actions Initiated by Photochemically Excited Pyrylium Salts.
Chem. Ber. 1993, 126, 1671–1682. (b) Miranda, M. A.; Garcia, H.
2,4,6-Triphenylpyrylium Tetrafluoroborate as an Electron-
Transfer Photosensitizer. Chem. Rev. 1994, 94, 1063–1089.
(c) Alfonzo, E.; Alfonso, F. S.; Beeler, A. B. Redesign of a Pyry-
lium Photoredox Catalyst and Its Application to the Generation of
Carbonyl Ylides. Org. Lett. 2017, 19, 2989–2992. (d) Wang, K.;
Meng, L.-G.; Wang, L. Visible-Light-Promoted [2 + 2 + 2] Cycli-
zation of Alkynes with Nitriles to Pyridines Using Pyrylium Salts
as Photoredox Catalysts. Org. Lett. 2017, 19, 1958–1961.
(22) For a seminal example of the employment of TADF mate-
rials in photocatalysis, see: Luo, J.; Zhang, J. Donor–Acceptor
Fluorophores for Visible-Light-Promoted Organic Synthesis:
Photoredox/Ni Dual Catalytic C(sp3)–C(sp2) Cross-Coupling. ACS
Catal. 2016, 6, 873−877.
(23) (a) Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Ada-
chi, C. Highly efficient organic light-emitting diodes from de-
layed fluorescence. Nature, 2012, 492, 234−238. For review
articles on organic TADF materials for OLEDs see also: (b) Yang,
Z.; Mao, Z.; Xie, Z.; Zhang, Y.; Liu, S.; Zhao, J.; Xu, J.; Chi, Z.;
Aldred, M. P. Recent advances in organic thermally activated
delayed fluorescence materials. Chem. Soc. Rev. 2017, 46,
915−1016. (c) Wong, M. Y.; Zysman-Colman, E. Purely Organic
Thermally Activated Delayed Fluorescence Materials for Organic
Light‐Emitting Diodes. Adv. Mater. 2017, 1605444.
(24) (a) Nishimoto, T.; Yasuda, T.; Lee, S. Y.; Kondo, R.;
Adachi, C. A six-carbazole-decorated cyclophosphazene as a host
with high triplet energy to realize efficient delayed-fluorescence
OLEDs. Mater. Horiz. 2014, 1, 264−269. (b) Cho, Y. J.; Jeon, S.
K.; Chin, B. D.; Yu, E.; Lee, J. Y. The Design of Dual Emitting
Cores for Green Thermally Activated Delayed Fluorescent Materi-
als. Angew. Chem., Int. Ed. 2015, 54, 5201−5204. (c) Cao, X.;
Zhang, D.; Zhang, S.; Tao, A.; Huang, W. CN-Containing donor–
acceptor-type small-molecule materials for thermally activated de-
layed fluorescence OLEDs. J. Mater. Chem. C 2017, 5, 7699−7714.
(25) McNaught, A.; Wilkinson, A. Gibbs Energy of Photoinduced
Electron Transfer. In IUPAC Compendium of Chemical Terminol-
ogy, 2nd ed. (the “Gold Book”); Nič, M., Jirát, J., Košata, B., Jenkins,
A., Eds.; Blackwell Scientific Publications: Oxford, 1997.
(31) For details on the SNAr-type synthesis of the particular
photocatalysts, please see Supporting Info.
(32) Hansch,C.; Leo, A.; Taft, R. W. A survey of Hammett sub-
stituent constants and resonance and field parameters. Chem. Rev.
1991, 91, 165–195. (σR values: F: -0.39; Cl: -0.19; Br: -0.22; CN:
+0.15). Within in the halogens only fluorine has a negative σ+
(electron-donating/stabilizing cations)
–
values for
σ
para/σ+
F: +0.15/-0.07; Cl: +0.24/+0.11; Br: +0.26/+0.15; CN: +0.70/‒).
Ritchie, C. D.; Sager, W. F. An Examination of Structure-Reactivity
Relationships. Prog. Phys. Org. Chem. 1964, 2, 323–400.
(33) For a correlation of the IrIV/IrIII oxidation potentials of fac-
tris-cyclometalated Ir(III) complexes with Hammett constants,
see: (a) Flamigni, L.; Barbieri, A.; Sabatini, C.; Ventura, B.;
Barigelletti; F. Photochemistry and Photophysics of Coordination
Compounds: Iridium. Top. Curr. Chem. 2007, 281, 143–203.
(b) Dedeian, K.; Djurovich, P. I.; Garces, F. O.; Carlson, G.;
Watts, R. J. A new synthetic route to the preparation of a series of
strong photoreducing agents: fac-tris-ortho-metalated complexes
of iridium(III) with substituted 2-phenylpyridines. Inorg. Chem.
1991, 30, 1685−1687.
(34) Further selected examples of correlation of redox poten-
tials with substituent effects according to Hammett constants;
notably these correlations are typically only applied for oxidation
potentials only, : (a) Jovanovic, S. V.; Tosic, J. M.; Simic, M. G.
Use of the Hammett Correlation and σ+ for Calculation of One-
Electron Redox Potentials of Antioxidants. J. Phys. Chem. 1991,
95, 10824–10827. (b) Silva, M. E. N. P. R. A.; Pombeiro, A. J. L.;
da Silva, J. J. R. F.; Herrmann, R.; Deus, Castilho, N.;T. J; Silva,
M. F. C. G. Redox potential and substituent effects at ferrocene
(26) The electronegativity of cyano groups is similar to CF3 and
CCl3 groups and halogens (ENCN = 3.3; ENCF3 = 3.0; ENCCl3
=
3.4; ENF = 4.0; ENCl = 3.0 – Pauling Scale): Wells, P. R. Group
Electronegativities. Prog. Phys. Org. Chem. 1968, 6, 111−145.
(27) For an overview on the corresponding catalyst structures
including names, please see Fig. 4. Additionally, all abbreviations
are summarized at the end of this article.
ACS Paragon Plus Environment