Inorganic Chemistry
Article
(8) Li, T.-Y.; Wu, J.; Wu, Z.-G.; Zheng, Y.-X.; Zuo, J.-L.; Pan, Y.
Rational design of phosphorescent iridium(III) complexes for
emission color tunability and their applications in OLEDs. Coord.
Chem. Rev. 2018, 374, 55−92.
Phosphors with Bis-Tridentate Chelating Architecture for High
Efficiency OLEDs. J. Mater. Chem. C 2015, 3, 3460−3471.
(28) Kuei, C.-Y.; Liu, S.-H.; Chou, P.-T.; Lee, G.-H.; Chi, Y. Room
Temperature Blue Phosphorescence; A Combined Experimental and
Theoretical Study on the Bis-tridentate Ir(III) Metal Complexes.
Dalton Trans. 2016, 45, 15364−15373.
(29) Lin, J.; Chau, N.-Y.; Liao, J.-L.; Wong, W.-Y.; Lu, C.-Y.; Sie, Z.-
T.; Chang, C.-H.; Fox, M. A.; Low, P. J.; Lee, G.-H.; Chi, Y. Bis-
Tridentate Iridium(III) Phosphors Bearing Functional 2-Phenyl-6-
(imidazol-2-ylidene)pyridine and 2-(Pyrazol-3-yl)-6-phenylpyridine
Chelates for Efficient OLEDs. Organometallics 2016, 35, 1813−1824.
(30) Roesch, K. R.; Larock, R. C. Synthesis of Isoquinolines and
Pyridines by the Palladium/Copper-Catalyzed Coupling and Cycliza-
tion of Terminal Acetylenes and Unsaturated Imines: The Total
Synthesis of Decumbenine B. J. Org. Chem. 2002, 67, 86−94.
(31) Jeganathan, M.; Pitchumani, K. Synthesis of substituted
isoquinolines via iminoalkyne cyclization using Ag(i) exchanged
K10-montmorillonite clay as a reusable catalyst. RSC Adv. 2014, 4,
38491−38497.
(32) Lin, J.; Wang, Y.; Gnanasekaran, P.; Chiang, Y.-C.; Yang, C.-C.;
Chang, C.-H.; Liu, S.-H.; Lee, G.-H.; Chou, P.-T.; Chi, Y.; Liu, S.-W.
Unprecedented Homoleptic Bis-Tridentate Iridium(III) Phosphors:
Facile, Scaled-Up Production, and Superior Chemical Stability. Adv.
Funct. Mater. 2017, 27, 1702856.
(33) Costa, R. D.; Orti, E.; Bolink, H. J.; Graber, S.; Housecroft, C.
E.; Constable, E. C. Light-emitting electrochemical cells based on a
supramolecularly-caged phenanthroline-based iridium complex. Chem.
Commun. 2011, 47, 3207−3209.
(34) Li, P.; Shan, G.-G.; Cao, H.-T.; Zhu, D.-X.; Su, Z.-M.; Jitchati,
R.; Bryce, M. R. Intramolecular π Stacking in Cationic Iridium(III)
Complexes with Phenyl-Functionalized Cyclometalated Ligands:
Synthesis, Structure, Photophysical Properties, and Theoretical
Studies. Eur. J. Inorg. Chem. 2014, 2014, 2376−2382.
(35) Qu, X.; Liu, Y.; Si, Y.; Wu, X.; Wu, Z. A theoretical study on
supramolecularly-caged positively charged iridium(iii) 2-pyridyl
azolate derivatives as blue emitters for light-emitting electrochemical
cells. Dalton Trans. 2014, 43, 1246−1260.
(36) Housecroft, C. E.; Constable, E. C. Over the LEC rainbow:
Colour and stability tuning of cyclometallated iridium(III) complexes
in light-emitting electrochemical cells. Coord. Chem. Rev. 2017, 350,
155−177.
(37) Namanga, J.; Gerlitzki, N.; Smetana, V.; Mudring, A.-V.
Supramolecularly-caged green emitting ionic Ir(III)-based complex
with fluorinated C^N ligands and its application in light emitting
electrochemical cells. ACS Appl. Mater. Interfaces 2018, 10, 11026−
11036.
(9) Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C.
Highly efficient organic light-emitting diodes from delayed
fluorescence. Nature 2012, 492, 234−238.
(10) Adachi, C. Third-generation organic electroluminescence
materials. Jpn. J. Appl. Phys. 2014, 53, No. 060101.
(11) Wong, M. Y.; Zysman-Colman, E. Purely Organic Thermally
Activated Delayed Fluorescence Materials for Organic Light-Emitting
Diodes. Adv. Mater. 2017, 29, 1605444.
(12) Kim, J. H.; Yun, J. H.; Lee, J. Y. Recent Progress of Highly
Efficient Red and Near-Infrared Thermally Activated Delayed
Fluorescent Emitters. Adv. Opt. Mater. 2018, 6, 1800255.
(13) Cai, X.; Su, S.-J. Marching Toward Highly Efficient, Pure-Blue,
and Stable Thermally Activated Delayed Fluorescent Organic Light-
Emitting Diodes. Adv. Funct. Mater. 2018, 28, 1802558.
(14) Chi, Y.; Chang, T.-K.; Ganesan, P.; Rajakannu, P. Emissive Bis-
Tridentate Ir(III) Metal Complexes: Tactics. Coord. Chem. Rev. 2017,
346, 91−100.
(15) Kim, K.-H.; Moon, C.-K.; Lee, J.-H.; Kim, S.-Y.; Kim, J.-J.
Highly Efficient Organic Light-Emitting Diodes with Phosphorescent
Emitters Having High Quantum Yield and Horizontal Orientation of
Transition Dipole Moments. Adv. Mater. 2014, 26, 3844−3847.
(16) Lee, T.; Caron, B.; Stroet, M.; Huang, D. M.; Burn, P. L.; Mark,
A. E. The molecular origin of anisotropic emission in an organic light-
emitting diode. Nano Lett. 2017, 17, 6464−6468.
(17) Wilkinson, A. J.; Puschmann, H.; Howard, J. A. K.; Foster, C.
E.; Williams, J. A. G. Luminescent Complexes of Iridium(III)
Containing N∧C∧N-Coordinating Terdentate Ligands. Inorg. Chem.
2006, 45, 8685−8699.
(18) Williams, J. A. G.; Wilkinson, A. J.; Whittle, V. L. Light-emitting
iridium complexes with tridentate ligands. Dalton Trans. 2008, 2081−
2099.
́
́
(19) Esteruelas, M. A.; Gomez-Bautista, D.; Lopez, A. M.; Onate, E.;
̃
Tsai, J.-Y.; Xia, C. η1-Arene Complexes as Intermediates in the
Preparation of Molecular Phosphorescent Iridium(III) Complexes.
Chem. - Eur. J. 2017, 23, 15729−15737.
(20) Kuo, H.-H.; Zhu, Z.-L.; Lee, C.-S.; Chen, Y.-K.; Liu, S.-H.;
Chou, P.-T.; Jen, A. K.-Y.; Chi, Y. Bis-tridentate Iridium(III)
Phosphors with Very High Photostability and Fabrication of Blue-
Emitting OLEDs. Adv. Sci. 2018, 5, 1800846.
(21) Chi, Y.; Wu, K.-L.; Wei, T.-C. Ruthenium and Osmium
Complexes That Bear Functional Azolate Chelates for Dye-Sensitized
Solar Cells. Chem. - Asian J. 2015, 10, 1098−1115.
(22) Chou, C.-C.; Wu, K.-L.; Chi, Y.; Hu, W.-P.; Yu, S. J.; Lee, G.-
H.; Lin, C.-L.; Chou, P.-T. Ru(II) Sensitizers with Heteroleptic
Tridentate Chelates for Dye-Sensitized Solar Cells. Angew. Chem., Int.
Ed. 2011, 50, 2054−2058.
(23) Hsu, C.-W.; Ho, S.-T.; Wu, K.-L.; Chi, Y.; Liu, S.-H.; Chou, P.-
T. Ru(ii) sensitizers with a tridentate heterocyclic cyclometalate for
dye-sensitized solar cells. Energy Environ. Sci. 2012, 5, 7549−7554.
(24) Wu, K.-L.; Ho, S.-T.; Chou, C.-C.; Chang, Y.-C.; Pan, H.-A.;
Chi, Y.; Chou, P.-T. Engineering of Osmium(II)-Based Light
Absorbers for Dye-Sensitized Solar Cells. Angew. Chem., Int. Ed.
2012, 51, 5642−5646.
(38) Qu, Z.-Z.; Gao, T.-B.; Wen, J.; Rui, K.; Ma, H.; Cao, D.-K.
Cyclometalated Ir(iii) complexes [Ir(tpy)(bbibH2)Cl][PF6] and
[Ir(tpy)(bmbib)Cl][PF6]: intramolecular π···π interactions leading
to facile synthesis and enhanced luminescence. Dalton Trans. 2018,
47, 9779−9786.
(39) Younker, J. M.; Dobbs, K. D. Correlating Experimental
Photophysical Properties of Iridium(III) Complexes to Spin−Orbit
Coupled TDDFT Predictions. J. Phys. Chem. C 2013, 117, 25714−
25723.
(40) Jansson, E.; Norman, P.; Minaev, B.; Ågren, H. Evaluation of
low-scaling methods for calculation of phosphorescence parameters. J.
Chem. Phys. 2006, 124, 114106.
(41) Yersin, H.; Rausch, A. F.; Czerwieniec, R.; Hofbeck, T.; Fischer,
T. The triplet state of organo-transition metal compounds. Triplet
harvesting and singlet harvesting for efficient OLEDs. Coord. Chem.
Rev. 2011, 255, 2622−2652.
(25) Chou, C.-C.; Hu, F.-C.; Yeh, H.-H.; Wu, H.-P.; Chi, Y.;
Clifford, J. N.; Palomares, E.; Liu, S.-H.; Chou, P.-T.; Lee, G.-H.
Highly Efficient Dye-Sensitized Solar Cells Based on Panchromatic
Ruthenium Sensitizers with Quinolinylbipyridine Anchors. Angew.
Chem., Int. Ed. 2014, 53, 178−183.
(26) Chen, J.-L.; Wu, Y.-H.; He, L.-H.; Wen, H.-R.; Liao, J.; Hong,
R. Iridium(III) Bis-tridentate Complexes with 6-(5-Trifluoromethyl-
pyrazol-3-yl)-2,2’-bipyridine Chelating Ligands: Synthesis, Character-
ization, and Photophysical Properties. Organometallics 2010, 29,
2882−2891.
(42) Zhou, X.; Burn, P. L.; Powell, B. J. Bond Fission and Non-
Radiative Decay in Iridium(III) Complexes. Inorg. Chem. 2016, 55,
5266−5273.
(43) Zhou, X.; Powell, B. J. Nonradiative Decay and Stability of N-
Heterocyclic Carbene Iridium(III) Complexes. Inorg. Chem. 2018, 57,
8881−8889.
(27) Tong, B.; Ku, H. Y.; Chen, I. J.; Chi, Y.; Kao, H.-C.; Yeh, C.-C.;
Chang, C.-H.; Liu, S.-H.; Lee, G.-H.; Chou, P.-T. Heteroleptic Ir(III)
J
Inorg. Chem. XXXX, XXX, XXX−XXX