RSC Advances
Paper
Under optimized reaction conditions, the homocoupling of
various terminal alkynes including aliphatic and aromatic
terminal alkynes with different functional groups were exam-
ined to investigate the substrate scope of the reaction, and the
results are summarized in Table 5, wherein, good to excellent
yields of 1,3-diynes were obtained.
The oxidative homocoupling of phenyl acetylenes which
contain electron donating (methyl, ethyl, n-pentyl, –oxymethyl)
as well as electron withdrawing groups (–F, –Cl) proceeded
smoothly to afford the corresponding diyne derivatives in
5 B. Karimi, A. Zamani and J. H. Clark, Organometallics, 2005,
24, 4695.
6 A. L. K. Shi Shun and R. R. Tykwinski, Angew. Chem., Int. Ed.,
2006, 45, 1034.
7 A. Stutz and G. Petranyi, J. Med. Chem., 1984, 27, 1539;
A. Stutz, Angew. Chem., Int. Ed. Engl., 1987, 26, 320.
8 J. M. Tour, Chem. Rev., 1996, 96, 537; R. E. Martin and
F. Diederich, Angew. Chem., Int. Ed., 1999, 38, 1350.
9 M. L. Lerch, M. K. Harper and D. J. Faulkner, J. Nat. Prod.,
2003, 66, 667; D. Lechner, M. Stavri, M. Oluwatuyi,
R. Perda-Miranda and S. Gibbons, Phytochemistry, 2004, 65,
331.
89–98% yields (Table 5, entries 2, 3, 4 and 7). In the case of –OH
substituted terminal alkynes, when the –OH group is in the
tertiary position, the yields of the corresponding diynes are 10 M. Gholami and R. R. Tykwinski, Chem. Rev., 2006, 106,
higher (Table 5, entries 9 and 11) compared to those with the
OH group present in the secondary position (Table 5, entries 8
4997; J. A. Marsden and M. M. Haley, J. Org. Chem., 2005,
70, 10213.
–
and 13), which is due to the oxidation of alcohol to ketones. The 11 Polyynes: Synthesis Properties, and Applications, ed. F.
homocoupling reaction of aliphatic terminal alkynes proceeded
more rapidly than that of aromatic terminal alkynes (Table 5,
entries 14–18).
Cataldo, CRC Press/Taylor & Francis, Boca Raton, Florida,
2005.
12 J. D. Crowley, S. M. Goldup, A. L. Lee, D. A. Leigh and
R. T. McBurney, Chem. Soc. Rev., 2009, 38, 1530.
1
3 F. Diederich, P. J. Stang and R. R. Tykwinski, Acetylene
Chemistry:Chemistry, Biology and Material Science, Wiley-
VCH Verlag GmbH & Co. KGaA, Weinheim, Germany,
Conclusions
Cu(II)-SBA-15 catalyzed the oxidative homocoupling of terminal
alkynes into the corresponding conjugated 1,3-diyne derivatives
up to 98% yields, even in absence of additives and/or bases. The
high activity (85–98% yields) of this solid catalyst may be
endowed by the isolated distribution of Cu(II) complexes, their
coordination environment, ease of accessibility and the
conned mesoporous environment of hexagonally ordered
mesopores of the SBA-15 support.
2
005.
1
4 C. Glaser, Ber. Dtsch. Chem. Ges., 1869, 2, 422; J. Li and
H. Jiang, Chem. Commun., 1999, 2369; J. S. Yadav,
B. V. S. Reddy, K. B. Reddy, K. U. Gayathri and
A. R. Prasad, Tetrahedron Lett., 2003, 44, 6493.
5 K. Inouchi, S. Kabashi, K. Takimiya, Y. Aso and T. Otsubo,
Org. Lett., 2002, 4, 2533.
1
1
6 A. S. Hay, J. Org. Chem., 1960, 25, 1275; A. S. Hay, J. Org.
Chem., 1962, 27, 3320.
Acknowledgements
17 K. Sonogashira, Y. Tohda and N. Hagihara, Tetrahedron Lett.,
975, 16, 4467.
1
Anand, Ravi Kumar and Ramudu acknowledge the Council of
Scientic and Industrial Research (CSIR), New Delhi for the
award of research fellowships.
1
1
8 A. S. Batsanov, J. C. Collings, I. J. S. Fairlamb,
J. P. Holland, J. A. K. Howard, Z. Y.Lin, T. B. Marder,
A. C. Parsons, R. M. Ward and J. Zhu, J. Org. Chem.,
2
005, 70, 703; M. Shi and H. X. Qian, Appl. Organomet.
Chem., 2006, 20, 771.
Notes and references
9 M. E. Kra, C. Hirosawa, N. Dalal, C. Ramsey and
A. Stiegman, Tetrahedron Lett., 2001, 42, 7733; G. Hilt,
C. Hengst and M. Arndt, Synthesis, 2009, 395.
1
L. Canali and D. C. Sherrington, Chem. Soc. Rev., 1999, 28, 85;
M.-C. Hsiao and S.-T. Liu, Catal. Lett., 2010, 139, 61;
S. Minakata and M. Komatsu, Chem. Rev., 2009, 109, 711; 20 Y. Liao, R. Fathi and Z. Yang, Org. Lett., 2003, 5, 902.
Supported Catalysts and Their Applications, ed. D. C. 21 W. Y. Yin, C. He, M. Chen, H. Zhang and A. W. Lei, Org. Lett.,
Sherrington and A. P. Kybett, RSC, Cambridge, 2001;
D. R. Burri, K.-W. Jun, Y.-H. Kim, J. M. Kim, S.-E. Park and
J. S. Yoo, Chem. Lett., 2002, 212; D. R. Burri, R. S. Isak,
2009, 11, 709; J. D. Crowley, S. M. Goldup, N. D. Gowans,
D. A. Leigh, V. E. Ronaldson and A. M. Z. Slawin, J. Am.
Chem. Soc., 2010, 132, 6243.
K. M. Choi and S.-E. Park, Catal. Commun., 2007, 8, 731; 22 P. Kuhn, A. Alix, M. Kumarraja, B. Louis, P. Pale and
N. Anand, K. H. P. Reddy, V. Swapna, K. S. Rama Rao and
D. R. Burri, Microporous Mesoporous Mater., 2011, 143, 132;
N. Anand, K. H. P. Reddy, K. S. Rama Rao and D. R. Burri,
Catal. Lett., 2011, 141, 1355.
J. Sommer, Eur. J. Org. Chem., 2009, 423; T. Oishi,
T. Katayama, K. Yamaguchi and N. Mizuno, Chem.–Eur. J.,
2009, 15, 7539; S. Chassaing, A. Alix, T. Boningari,
K. S. S. Sido, M. Keller, P. Kuhn, B. Louis, J. Sommer and
P. Pale, Synthesis, 2010, 1557.
2
3
L. Yin and J. Liebscher, Chem. Rev., 2007, 107, 133.
V. Meynen, P. Cool and E. F. Vansant, Microporous 23 D. Wang, J. Li, N. Li, T. Gao, S. Hou and B. Chen, Green
Mesoporous Mater., 2009, 125, 170. Chem., 2010, 12, 45.
D. Choudhary, S. Paul, R. Gupta and J. H. Clark, Green Chem., 24 A. Kusuda, X.-H. Xu, X. Wang, E. Tokunaga and N. Shibata,
006, 8, 479. Green Chem., 2011, 13, 843.
4
2
3780 | RSC Adv., 2014, 4, 3774–3781
This journal is © The Royal Society of Chemistry 2014