Scheme 1. Photoreversible Equilibria and Metal
Complexation of Spiropyran Derivates with
Divalent Metal Ions
reported so far have been mainly confined to UV-visible absorp-
tion spectroscopy.14-30 Less attention has been paid to lumines-
cence spectroscopy due to the common susceptibility of lower
quantum yields of such dyes,12,13 although the “signal communica-
tions” of absorption and fluorescence between a spiropyran
nucleus and a fluorophore have been studied based on intermo-
lecular energy transfer or photoinduced proton transfer.31,32
Another alternative way to convert absorbance signal into
fluorescence signal without covalent linking of a chromotropic
receptor and a fluorophore can be exploited by fluorescence inner
filter effects (IFEs). In the approach, two dyes are employed, one
absorbent, the other fluorescent. If the absorption spectrum of
the absorbing dye possesses a complementary overlap region with
the excitation or emission spectrum of the fluorescent dye, the
fluorescence emission of the fluorophore is thus modulated by
the absorber.33-36 The IFE is a source of errors in fluorometry,
but it can be useful for an optical chemical sensor by converting
the analytical absorption signals into fluorescence signals.37-40
These sensors did not require the establishing of any covalent
linking between the receptor and a fluorophore but utilize the
fluorophore and the receptor as such. Moreover, since the
changes in the absorbance of the absorber translate into expo-
nential changes in fluorescence of the fluorophore, an enhanced
sensitivity and decreased detection limits for the analytical method
is reasonable with respect to the absorbance values alone.37,38
In our preliminary experiments, we observed that the UV-
visible absorption property of a newly synthesized spiropyran
derivative, 1 (Chart 1), was modulated by copper ion. The metal-
free state of 1 is colorless and exhibits no absorption in the visible
Taylor and Phillips independently demonstrated that the negatively
charged phenolic oxygen atom in the merocyanine form of a
spiropyran nucleus could bind to a metal center in cooperation
with other chelating function attached at the 8′-position (Scheme
1).10,11 During the past decade, a number of such interesting
compounds have been synthesized for divalent metal ion
recognition.12-21 More sophisticated systems, with multiple metal
binding sites in the spiropyran-crown (or cryptand) ether
conjugates have also been developed for alkali metal ion
recognition.22-30 However, most of such metal binding events
(4) For selected examples of cationic ion fluorescent probes, see: (a) Nakatsuji,
Y.; Kita, K.; Inoue, H.; Zhang, W.; Kida, T.; Ikeda, I. J. Am. Chem. Soc. 2000,
122, 6307-6308. (b) Watanabe, S.; Ikishima, S.; Matsuo, T.; Yoshida, K. J.
Am. Chem. Soc. 2001, 123, 8402-8403. (c) Walkup, G. K.; Burdette, S. C.;
Lippard, S. J.; Tsien, R. Y. J. Am. Chem. Soc. 2000, 122, 5644-5645. (d)
Chen, C. T.; Huang, W. P. J. Am. Chem. Soc. 2002, 124, 6246-6247. (e)
Yang, R. H.; Chan, W. H.; Lee, A. W. M.; Xia, P. F.; Zhang, H. K.; Li, K. A.
J. Am. Chem. Soc. 2003, 125, 2884-2885. (f) Ono, A.; Togashi, H. Angew.
Chem., Int. Ed. 2004, 43, 4300-4302. (g) Huang, H. M.; Wang, K. M.;
Tan. W. H.; An. A. L.; Huang, S. S,; Zhai, Q.; Zhou, L. J.; Jin, Y. Angew.
Chem., Int. Ed. 2004, 43, 5635-5638. (h) Arunkmar, E.; Ajayaghosh, A.;
Daub, J. J. Am. Chem. Soc. 2005, 122, 3156-3164.
(22) Inouye, M.; Ueno, M.; Kitao, T.; Tsuchiya, K. J. Am. Chem. Soc. 1990, 112,
8977-8979.
(23) Kimura, K.; Yamashita, T.; Yokoyama, M. J. Chem. Soc., Chem. Commun.
1991, 147-148.
(24) Kimura, K.; Kaneshige, M.; Yamashita, T.; Yokoyama, M. J. Org. Chem.
1994, 59, 1251-1256.
(25) Inouye, M.; Noguchi, Y.; Isagawa, K. Angew. Chem., Int. Ed. Engl. 1994,
33, 1163-1166.
(5) The IUPAC nomenclature of spiropyran is 1′,3′-dihydro-1′,3′,3′-trimethyl-
spiro-[2H-1-benzopyran-2, 2′-indoline]
(26) Kimura, K.; Utsumi, T.; Teranishi, T.; Yokoyama, M.; Sakamoto, H.;
Okamoto, M.; Arakawa, R.; Moriguchi, H.; Miyaji, Y. Angew. Chem., Int.
Ed. Engl. 1997, 36, 2452-2454.
(6) Fischer, E.; Hirshberg, Y. J. Chem. Soc. 1952, 4522-4524.
(7) Bertelson, R. C. In Photochromism; Brown, G. H.; Ed.; Wiley-Interscience:
New York, 1971; pp 45-431, and references therein.
(27) Filley, J.; Ibrahim, M. A.; Nimlos, M. R.; Watt, A. S.; Blake, D. M. J.
(8) Guglielmetti, R. In Photochromoism: Molecules and Systems, Studies in
Organic Chemistry; Du¨rr, H., Bouas-Laurent, H. Eds.; Elsevier: Amsterdam,
1990; Chapter 8 and 23, and references therein.
(9) ] Berkovic, G.; Krongauz, V.; Weiss, V. Chem. Rev. 2000, 100, 1741-1753.
(10) Phillips, J.; Mueller, A.; Przystal, F. J. Am. Chem. Soc. 1965, 87, 4020.
(11) Taylor, L. D.; Nicholson, J.; Davis, R. B. Tetrahedron Lett. 1967, 8, 1585-
1588.
(12) Preigh, M. J.; Lin, F. T.; Ismail, K. Z.; Weber, S. G. J. Chem. Soc., Chem.
Commun. 1995, 2091-2092.
(13) Winkler, J. D.; Bowen, C. M.; Michelet, V. J. Am. Chem. Soc. 1998, 120,
3237-3242.
(14) Chibisov, A. K.; Gorner, H. Chem. Phys. 1998, 237, 425-442.
(15) Gorner, H.; Chibisov, A. K. J. Chem. Soc., Faraday Trans. 1998, 94, 2557-
2564.
(16) Evans, L.; Collins, G. E.; Shaffer, R. E.; Michelet, V.; Winkler, J. D. Anal.
Chem. 1999, 71, 5322-5327.
Photochem. Photobiol. A 1998, 117, 193-198.
(28) Salhin, A. M. A.; Tanaka, M.; Kamada, K.; Ando, H.; Ikeda, T.; Shibutani,
Y.; Yajima, S.; Nakamura, M.; Kimura, K. Eur. J. Org. Chem. 2002, 655-
662.
(29) Ahmed, S. A.; Tanaka, M.; Ando, H.; Iwamoto, H.; Kimura.; K, Eur. J. Org.
Chem. 2003, 2437-2442.
(30) Sakamoto, H.; Takagaki, H.; Nakamura, M.; Kimura, K. Anal. Chem. 2005,
77, 1999-2006.
(31) (a) Bahr, J. L.; Kodis, G.; dp la Garza, L.; Lin, S.; Moore, A. L.; Moore, T.
A.; Gust, D. J. Am. Chem. Soc. 2001, 123, 7124-7133. (b) Guo, X. F.; Zhang,
D. Q.; Zhou, Y. C.; Zhu, D. B. J. Org. Chem. 2003, 68, 5681-5687.
(32) (a) Raymo, F. M.; Giordani, S. J. Am. Chem. Soc. 2002, 124, 2004-2007.
(b) Raymo, F. M.; Giordani, S. Org. Lett. 2001, 3, 3475-3478. (c) Raymo,
F. M.; Alvarado, R. J.; Giordani, S.; Cejas, M. A. J. Am. Chem. Soc. 2003,
125, 2361-2364. (d) Giordani, S.; Cejas, M. A.; Raymo, F. M. Tetrahedron
2004, 60, 10973-10981.
(17) Collins, G. E.; Choi, L. S.; Ewing, K. J.; Michelet, V.; Bowen, C. M.; Winkler,
(33) Parker, C. A.; Barnes, W. J. Analyst 1957, 82, 606-617.
(34) Parker, C. A.; Tees, W. T. Analyst 1962, 87, 83-111.
(35) Holland, J. F.; Teets, R. E.; Kelly, P. M.; Timnick, A. Anal. Chem. 1977,
49, 706-710.
J. D. Chem. Commun. 1999, 321-322.
(18) Nishikiori, H.; Sasai, R.; Arai, N.; Arai, N.; Takagi, K. Chem. Lett. 2000,
1142-1143.
(19) Leaustic, A.; Dupont, A.; Yu, P.; Clement, R. N. J. Chem. 2001, 25, 1297-
1301.
(20) Wojtyk, J. T. C.; Kazmaier, P. M.; Buncel, E. Chem. Mater. 2001, 13, 2547-
2551.
(21) Kopelman, R. A.; Snyder, S. M.; Frank, N. L. J. Am. Chem. Soc. 2003, 125,
13684-13685.
(36) Leese, R.; Wehry, E. L. Anal. Chem. 1978, 50, 1193-1197.
(37) Yuan, P.; Walt, D. R. Anal. Chem. 1987, 59, 2391-2394.
(38) Gabor, G.; Walt, D. R. Anal. Chem. 1991, 63, 793-796.
(39) He, H. R.; Li, H.; Mohr, G.; Kova´cs B.; Werner, T.; Wolfbeis, O. S. Anal.
Chem. 1993, 65, 123-127.
(40) Yang, X. H.; Wang, K. M. Guo, C. C. Anal. Chim. Acta 2000, 407, 45-52.
Analytical Chemistry, Vol. 77, No. 22, November 15, 2005 7295