Welcome to LookChem.com Sign In|Join Free
  • or

Encyclopedia

Ethyl 4,5-dihydro-2,4-dimethyl-5-methoxy-3-furancarboxylate

Base Information Edit
  • Chemical Name:Ethyl 4,5-dihydro-2,4-dimethyl-5-methoxy-3-furancarboxylate
  • CAS No.:124186-12-5
  • Molecular Formula:C10H16O4
  • Molecular Weight:200.235
  • Hs Code.:
  • DSSTox Substance ID:DTXSID60924738
  • Mol file:124186-12-5.mol
Ethyl 4,5-dihydro-2,4-dimethyl-5-methoxy-3-furancarboxylate

Synonyms:Ethyl 4,5-dihydro-2,4-dimethyl-5-methoxy-3-furancarboxylate;124186-12-5;2,3-Dihydro-2-methoxy-4-ethoxycarbonyl-3,5-dimethylfuran;3-Furancarboxylic acid, 4,5-dihydro-2,4-dimethyl-5-methoxy-, ethyl ester;DTXSID60924738;LS-70164;ETHYL 5-METHOXY-2,4-DIMETHYL-4,5-DIHYDROFURAN-3-CARBOXYLATE

Suppliers and Price of Ethyl 4,5-dihydro-2,4-dimethyl-5-methoxy-3-furancarboxylate
Supply Marketing:Edit
Business phase:
The product has achieved commercial mass production*data from LookChem market partment
Manufacturers and distributors:
  • Manufacture/Brand
  • Chemicals and raw materials
  • Packaging
  • price
Total 1 raw suppliers
Chemical Property of Ethyl 4,5-dihydro-2,4-dimethyl-5-methoxy-3-furancarboxylate Edit
Chemical Property:
  • Vapor Pressure:0.0193mmHg at 25°C 
  • Boiling Point:252.4°C at 760 mmHg 
  • Flash Point:104°C 
  • Density:1.07g/cm3 
  • XLogP3:1.5
  • Hydrogen Bond Donor Count:0
  • Hydrogen Bond Acceptor Count:4
  • Rotatable Bond Count:4
  • Exact Mass:200.10485899
  • Heavy Atom Count:14
  • Complexity:257
Purity/Quality:

98%min *data from raw suppliers

Safty Information:
  • Pictogram(s):  
  • Hazard Codes: 
MSDS Files:

SDS file from LookChem

Useful:
  • Canonical SMILES:CCOC(=O)C1=C(OC(C1C)OC)C
Technology Process of Ethyl 4,5-dihydro-2,4-dimethyl-5-methoxy-3-furancarboxylate

There total 4 articles about Ethyl 4,5-dihydro-2,4-dimethyl-5-methoxy-3-furancarboxylate which guide to synthetic route it. The literature collected by LookChem mainly comes from the sharing of users and the free literature resources found by Internet computing technology. We keep the original model of the professional version of literature to make it easier and faster for users to retrieve and use. At the same time, we analyze and calculate the most feasible synthesis route with the highest yield for your reference as below:

synthetic route:
Guidance literature:
With toluene-4-sulfonic acid; In benzene; for 0.25h; Yield given; Ambient temperature;
DOI:10.1007/BF01145799
Guidance literature:
Multi-step reaction with 2 steps
1: 1.) MeONa, 2.) conc. H2SO4 / 1.) 20 min, 2.) 30 min
2: p-toluenesulfonic acid / benzene / 0.5 h
With sulfuric acid; sodium methylate; toluene-4-sulfonic acid; In benzene;
Post RFQ for Price