Welcome to LookChem.com Sign In|Join Free

CAS

  • or

126543-43-9

Post Buying Request

126543-43-9 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

126543-43-9 Usage

Chemical Properties

White Solid

Uses

Trichloroethylene metabolite

Check Digit Verification of cas no

The CAS Registry Mumber 126543-43-9 includes 9 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 6 digits, 1,2,6,5,4 and 3 respectively; the second part has 2 digits, 4 and 3 respectively.
Calculate Digit Verification of CAS Registry Number 126543-43:
(8*1)+(7*2)+(6*6)+(5*5)+(4*4)+(3*3)+(2*4)+(1*3)=119
119 % 10 = 9
So 126543-43-9 is a valid CAS Registry Number.
InChI:InChI=1/C7H9Cl2NO3S/c1-4(11)10-5(7(12)13)2-14-3-6(8)9/h3,5H,2H2,1H3,(H,10,11)(H,12,13)/t5-/m0/s1

126543-43-9SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 19, 2017

Revision Date: Aug 19, 2017

1.Identification

1.1 GHS Product identifier

Product name N-Acetyl-S-(2,2-dichloroethenyl)-L-cysteine

1.2 Other means of identification

Product number -
Other names N-acetyl-(2,2-dichlorovinyl)cysteine

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:126543-43-9 SDS

126543-43-9Downstream Products

126543-43-9Relevant articles and documents

Sulfoxidation of mercapturic acids derived from tri- and tetrachloroethene by cytochromes P450 3A: A bioactivation reaction in addition to deacetylation and cysteine conjugate β-lyase mediated cleavage

Werner, Michael,Birner, Gerhard,Dekant, Wolfgang

, p. 41 - 49 (1996)

In the present study we investigated the formation of sulfoxides from N-acetyl-S-(1,2,2-trichlorovinyl)-L-cysteine (N-Ac-TCVC), N-acetyl-S-(1,2-dichlorovinyl)-L-cysteine (N-Ac-1,2-DCVC), and N-acetyl-S-(2,2-dichlorovinyl)-L-cysteine (N-Ac-2,2-DCVC), which are formed in the glutathione dependent bioactivation of tri- and tetrachloroethene. The first aim was to elucidate the enzymes involved in these oxidation reactions. N-Ac-TCVC, N-Ac-1,2-DCVC, and N-Ac-2,2-DCVC are oxidized to the corresponding sulfoxides mainly, if not exclusively, by cytochrome P450 enzymes in liver microsomes of untreated male rats, since no role for the flavin-containing monooxygenase (FMO) could be demonstrated by heat inactivation experiments and by the use of n-octylamine. The sulfoxidation rates were increased when using liver microsomes of phenobarbital and dexamethasone pretreated male rats as well as liver microsomes of dexamethasone pretreated female rats, while no sulfoxide formation was observed in liver microsomes of untreated female rats, suggesting an involvement of cytochrome P450 3A. Also, troleandomycin, a specific chemical inhibitor for cytochrome P450 3A, drastically reduced sulfoxidation rates. The observed rates of sulfoxidation also correlated well with the rates of oxidation of testosterone at the 6-β-position, a specific marker for P450 3A activity. The second aim of this study was to compare the cytotoxicity of the sulfoxides with the cytotoxicity of the corresponding mercapturic acids in isolated rat renal epithelial cells. Both mercapturic acids and the corresponding sulfoxides were cytotoxic. Cytotoxicity of the mercapturic acids could be blocked by (aminooxy)acetic acid (AOAA), an inhibitor of cysteine conjugate β-lyase, while the cytotoxicity of the sulfoxides was not influenced by this treatment. Moreover, the sulfoxides were significantly more cytotoxic than the corresponding mercapturic acids at equimolar doses. The results show that mercapturic acids derived from TRI and PER are oxidized to sulfoxides by microsomal monooxygenases from rat liver. The cytotoxicity of the produced sulfoxides could not be reduced by AOAA, consistent with a role of the sulfoxides as direct acting electrophiles (i.e., Michael acceptor substrates).

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 126543-43-9