Welcome to LookChem.com Sign In|Join Free

CAS

  • or

14691-52-2

Post Buying Request

14691-52-2 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

14691-52-2 Usage

Chemical Properties

Peroxonitrous acid- HOONO, is an isomer of nitric acid, HNO3, to which it rapidly converts. The half-life of peroxonitrous acid at 0 °C is 10 s; at 27°C, 0.23 s.

Check Digit Verification of cas no

The CAS Registry Mumber 14691-52-2 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 1,4,6,9 and 1 respectively; the second part has 2 digits, 5 and 2 respectively.
Calculate Digit Verification of CAS Registry Number 14691-52:
(7*1)+(6*4)+(5*6)+(4*9)+(3*1)+(2*5)+(1*2)=112
112 % 10 = 2
So 14691-52-2 is a valid CAS Registry Number.
InChI:InChI=1/HNO3/c2-1-4-3/h3H

14691-52-2SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 19, 2017

Revision Date: Aug 19, 2017

1.Identification

1.1 GHS Product identifier

Product name peroxynitrous acid

1.2 Other means of identification

Product number -
Other names HOONO

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:14691-52-2 SDS

14691-52-2Relevant articles and documents

Constraining the mechanism of OH + NO2 using isotopically labeled reactants: Experimental evidence for HOONO formation

Donahue, Neil M.,Mohrschladt, Ralf,Dransfield, Timothy J.,Anderson, James G.,Dubey, Manvendra K.

, p. 1515 - 1520 (2001)

The reaction of OH with NO2 is central to atmospheric chemistry, and its dynamics can be constrained by studying the kinetics of isotopically labeled 18OH with NO2. Experimental data on the scrambling rate constant for oxy

Product Analysis of the OH + NO2 + M Reaction

Burkholder, James B.,Hammer, Philip D.,Howard, Carleton J.

, p. 2136 - 2144 (1987)

A high-resolution Fourier transform spectrometer optically coupled to a fast flow multipass absorption cell was used to spectroscopically study the products of OH + NO2 + M -> HONO2 + M (1a) and OH + NO2+ M -> HOONO + M (1b).Infrared absorption spectra of the products of reaction 1 were recorded over the range 1850-3850/cm for the following conditions: pressure 3 to 850 Torr, temperature 248 to 298 K, and 0 = (5 to 100)E11 molecules/cm3.The infrared absorption spectrum of HOONO was not observed under these conditions.If the OH stretch band strength of HOONO is equel to that of HONO2 this indicates -10+25percent of reaction 1 forms HONO2.These results are compared with predictions of the branching ratio of reaction 1 obtained from statistical theory.

Cold atmospheric plasma activated water as a prospective disinfectant: The crucial role of peroxynitrite

Zhou, Renwu,Zhou, Rusen,Prasad, Karthika,Fang, Zhi,Speight, Robert,Bazaka, Kateryna,Ostrikov, Kostya

supporting information, p. 5276 - 5284 (2018/12/05)

The socio-economic, environmental, and health implications of diseases caused by pathogenic microorganisms and their treatment using conventional antimicrobials are significant. The increasing resistance to antibiotics and detrimental biological side effects of many common antibiotics on human health and on the ecosystem have driven the search for new cost-effective and highly-efficient sterilization treatments and agents that are more environmentally benign. Plasma activated water (PAW), a product of cold atmospheric plasma reacting with water, is a promising broad-spectrum biocidal agent whose biochemical activity is attributed to the presence of a rich diversity of highly reactive oxygen and nitrogen species (RONS). The transient activity of PAW, where PAW reverts to water within days of storage and application, suggests that it can become a green alternative to conventional chemical treatment methods, yet the issues of scale up and the not fully understood mechanism of activity remain. In this study, we sought to explore the antibiotic potential of PAW generated from a plasma jet in a continuous flow reactor and determine the individual and combined contribution of thus-generated reactive chemistries in PAW for organism inactivation. Treatment of Escherichia coli with PAW led to more than a 4-log reduction, while exposure to an equivalent single dose of hydrogen peroxide (H2O2), nitrate (NO3-) or nitrite (NO2-) to that found in PAW failed to attain the same level of reduction. Peroxynitrite was identified as a critical bioactive species, particularly under acidic conditions, originating from the synergistic plasma effects (like the reactions of H2O2, NO3-, NO2- and other existing short-lived species like OH radicals in PAW). This research successfully demonstrated the possibility of PAW being an effective environmentally benign disinfectant, the activity of which is closely linked to the generation of peroxynitrite, providing much needed insights into the fundamental aspects of PAW chemistry required for optimisation of the biochemical activity of PAW and translation of this decontamination strategy into real life applications.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 14691-52-2