Welcome to LookChem.com Sign In|Join Free

CAS

  • or

15785-26-9

Post Buying Request

15785-26-9 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

15785-26-9 Usage

Uses

Aminocyclopropylacetic Acid is a non-proteinogenic amino acid. It is used as a reactant in the preparation of tricyclic pyrazolopyrimidines as selective GPR119 agonists.

Check Digit Verification of cas no

The CAS Registry Mumber 15785-26-9 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 1,5,7,8 and 5 respectively; the second part has 2 digits, 2 and 6 respectively.
Calculate Digit Verification of CAS Registry Number 15785-26:
(7*1)+(6*5)+(5*7)+(4*8)+(3*5)+(2*2)+(1*6)=129
129 % 10 = 9
So 15785-26-9 is a valid CAS Registry Number.
InChI:InChI=1/C5H9NO2/c6-4(5(7)8)3-1-2-3/h3-4H,1-2,6H2,(H,7,8)

15785-26-9SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 15, 2017

Revision Date: Aug 15, 2017

1.Identification

1.1 GHS Product identifier

Product name 2-amino-2-cyclopropylacetic acid

1.2 Other means of identification

Product number -
Other names Cyclopropaneaceticacid,|A-amino

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:15785-26-9 SDS

15785-26-9Relevant articles and documents

Bioelectrocatalytic Conversion from N2 to Chiral Amino Acids in a H2/α-Keto Acid Enzymatic Fuel Cell

Cai, Rong,Chen, Hsiaonung,Chen, Hui,Dong, Fangyuan,Minteer, Shelley D.,Prater, Matthew B.

, p. 4028 - 4036 (2020)

Enzymatic electrosynthesis is a promising approach to produce useful chemicals with the requirement of external electrical energy input. Enzymatic fuel cells (EFCs) are devices to convert chemical energy to electrical energy via the oxidation of fuel at the anode and usually the reduction of oxygen or peroxide at the cathode. The integration of enzymatic electrosynthesis with EFC architectures can simultaneously result in self-powered enzymatic electrosynthesis with more valuable usage of electrons to produce high-value-added chemicals. In this study, a H2/α-keto acid EFC was developed for the conversion from chemically inert nitrogen gas to chiral amino acids, powered by H2 oxidation. A highly efficient cathodic reaction cascade was first designed and constructed. Powered by an applied voltage, the cathode supplied enough reducing equivalents to support the NH3 production and NADH recycling catalyzed by nitrogenase and diaphorase. The produced NH3 and NADH were reacted in situ with leucine dehydrogenase (LeuDH) to generate l-norleucine with 2-ketohexanoic acid as the NH3 acceptor. A 92% NH3 conversion ratio and 87.1% Faradaic efficiency were achieved. On this basis, a H2-powered fuel cell with hyper-thermostable hydrogenase (SHI) as the anodic catalyst was combined with the cathodic reaction cascade to form the H2/α-keto acid EFC. After 10 h of reaction, the concentration of l-norleucine achieved 0.36 mM with >99% enantiomeric excess and 82% Faradaic efficiency. From the broad substrate scope and the high enzymatic enantioselectivity of LeuDH, the H2/α-keto acid EFC is an energy-efficient alternative to electrochemically produce chiral amino acids for biotechnology applications.

Direct monitoring of biocatalytic deacetylation of amino acid substrates by1H NMR reveals fine details of substrate specificity

De Cesare, Silvia,McKenna, Catherine A.,Mulholland, Nicholas,Murray, Lorna,Bella, Juraj,Campopiano, Dominic J.

supporting information, p. 4904 - 4909 (2021/06/16)

Amino acids are key synthetic building blocks that can be prepared in an enantiopure form by biocatalytic methods. We show that thel-selective ornithine deacetylase ArgE catalyses hydrolysis of a wide-range ofN-acyl-amino acid substrates. This activity was revealed by1H NMR spectroscopy that monitored the appearance of the well resolved signal of the acetate product. Furthermore, the assay was used to probe the subtle structural selectivity of the biocatalyst using a substrate that could adopt different rotameric conformations.

Preparation of (S)-1-cyclopropyl-2-methoxyethanamine by a chemoenzymatic route using leucine dehydrogenase

Parker, William L.,Hanson, Ronald L.,Goldberg, Steven L.,Tully, Thomas P.,Goswami, Animesh

experimental part, p. 464 - 469 (2012/08/08)

(S)-1-Cyclopropyl-2-methoxyethanamine is a key chiral intermediate for the synthesis of a corticotropin-releasing factor-1(CRF-1) receptor antagonist. Resolution of the racemic amine by transaminase from Vibrio fluvalis gave a 38% yield of the S-amine wit

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 15785-26-9