Welcome to LookChem.com Sign In|Join Free

CAS

  • or

17264-02-7

Post Buying Request

17264-02-7 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

17264-02-7 Usage

General Description

1-Cyclohexyl-1-propanol, also known as CHXP, is an organic compound with the chemical formula C9H18O. It is a colorless liquid with a floral-like odor and is commonly used as a fragrance ingredient in perfumes and personal care products. CHXP is also used as a solvent in various industrial applications and as a chemical intermediate in the synthesis of other compounds. It is considered to have low acute toxicity and is relatively stable under normal storage and handling conditions. CHXP may also be used as a solvent for nitrocellulose and other cellulose esters, as well as in the production of plasticizers and pharmaceuticals.

Check Digit Verification of cas no

The CAS Registry Mumber 17264-02-7 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 1,7,2,6 and 4 respectively; the second part has 2 digits, 0 and 2 respectively.
Calculate Digit Verification of CAS Registry Number 17264-02:
(7*1)+(6*7)+(5*2)+(4*6)+(3*4)+(2*0)+(1*2)=97
97 % 10 = 7
So 17264-02-7 is a valid CAS Registry Number.
InChI:InChI=1/C9H18O/c1-2-9(10)8-6-4-3-5-7-8/h8-10H,2-7H2,1H3/t9-/m0/s1

17264-02-7SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 17, 2017

Revision Date: Aug 17, 2017

1.Identification

1.1 GHS Product identifier

Product name 1-cyclohexylpropan-1-ol

1.2 Other means of identification

Product number -
Other names Phenylpropylalcohol

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:17264-02-7 SDS

17264-02-7Relevant articles and documents

Dynamic Kinetic Resolution of Alcohols by Enantioselective Silylation Enabled by Two Orthogonal Transition-Metal Catalysts

Oestreich, Martin,Seliger, Jan

supporting information, p. 247 - 251 (2020/10/29)

A nonenzymatic dynamic kinetic resolution of acyclic and cyclic benzylic alcohols is reported. The approach merges rapid transition-metal-catalyzed alcohol racemization and enantioselective Cu-H-catalyzed dehydrogenative Si-O coupling of alcohols and hydrosilanes. The catalytic processes are orthogonal, and the racemization catalyst does not promote any background reactions such as the racemization of the silyl ether and its unselective formation. Often-used ruthenium half-sandwich complexes are not suitable but a bifunctional ruthenium pincer complex perfectly fulfills this purpose. By this, enantioselective silylation of racemic alcohol mixtures is achieved in high yields and with good levels of enantioselection.

Multiple Mechanisms Mapped in Aryl Alkyl Ether Cleavage via Aqueous Electrocatalytic Hydrogenation over Skeletal Nickel

Hegg, Eric L.,Jackson, James E.,Klinger, Grace E.,Saffron, Christopher M.,Zhou, Yuting

, p. 4037 - 4050 (2020/03/10)

We present here detailed mechanistic studies of electrocatalytic hydrogenation (ECH) in aqueous solution over skeletal nickel cathodes to probe the various paths of reductive catalytic C-O bond cleavage among functionalized aryl ethers relevant to energy science. Heterogeneous catalytic hydrogenolysis of aryl ethers is important both in hydrodeoxygenation of fossil fuels and in upgrading of lignin from biomass. The presence or absence of simple functionalities such as carbonyl, hydroxyl, methyl, or methoxyl groups is known to cause dramatic shifts in reactivity and cleavage selectivity between sp3 C-O and sp2 C-O bonds. Specifically, reported hydrogenolysis studies with Ni and other catalysts have hinted at different cleavage mechanisms for the C-O ether bonds in α-keto and α-hydroxy β-O-4 type aryl ether linkages of lignin. Our new rate, selectivity, and isotopic labeling results from ECH reactions confirm that these aryl ethers undergo C-O cleavage via distinct paths. For the simple 2-phenoxy-1-phenylethane or its alcohol congener, 2-phenoxy-1-phenylethanol, the benzylic site is activated via Ni C-H insertion, followed by beta elimination of the phenoxide leaving group. But in the case of the ketone, 2-phenoxyacetophenone, the polarized carbonyl πsystem apparently binds directly with the electron rich Ni cathode surface without breaking the aromaticity of the neighboring phenyl ring, leading to rapid cleavage. Substituent steric and electronic perturbations across a broad range of β-O-4 type ethers create a hierarchy of cleavage rates that supports these mechanistic ideas while offering guidance to allow rational design of the catalytic method. On the basis of the new insights, the usage of cosolvent acetone is shown to enable control of product selectivity.

Selective hydrogenation of aromatic compounds using modified iridium nanoparticles

Jiang, He-Yan,Xu, Jie,Sun, Bin

, (2018/01/27)

Till now, Ionic liquid-stabilized metal nanoparticles were investigated as catalytic materials, mostly in the hydrogenation of simple substrates like olefins or arenes. The adjustable hydrogenation products of aromatic compounds, including quinoline and relevant compounds, aromatic nitro compounds, aromatic ketones as well as aromatic aldehydes, are always of special interest, since they provide more choices for additional derivatization. Iridium nanoparticles (Ir NPs) were synthesized by the H2 reduction in imidazolium ionic liquid. TEM indicated that the Ir NPs is worm-like shape with the diameter around 12.2?nm and IR confirmed the modification of phosphine-functionalized ionic liquids (PFILs) to the Ir NPs. With the variation of the modifier, solvent and reaction temperature, substrate like quinoline and relevant compounds, aromatic nitro compounds, aromatic ketones as well as aromatic aldehydes could be hydrogenated by Ir NPs with interesting adjustable catalytic activity and chemoselectivity. Ir NPs modified by PFILs are simple and efficient catalysts in challenging chemoselective hydrogenation of quinoline and relevant compounds, aromatic nitro compounds, aromatic ketones as well as aromatic aldehydes. The activity and chemoselectivity of the Ir NPs could be obviously impacted or adjusted by altering the modifier, solvent and reaction temperature.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 17264-02-7