Welcome to LookChem.com Sign In|Join Free

CAS

  • or

19293-58-4

Post Buying Request

19293-58-4 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

19293-58-4 Usage

Uses

4-Dimethylaminobenzylamine is an Inhibition of rabbit liver monoamine oxidase.

Synthesis Reference(s)

The Journal of Organic Chemistry, 55, p. 2968, 1990 DOI: 10.1021/jo00296a078

Check Digit Verification of cas no

The CAS Registry Mumber 19293-58-4 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 1,9,2,9 and 3 respectively; the second part has 2 digits, 5 and 8 respectively.
Calculate Digit Verification of CAS Registry Number 19293-58:
(7*1)+(6*9)+(5*2)+(4*9)+(3*3)+(2*5)+(1*8)=134
134 % 10 = 4
So 19293-58-4 is a valid CAS Registry Number.
InChI:InChI=1/C6H10Cl2/c7-5-1-2-6(8)4-3-5/h5-6H,1-4H2

19293-58-4Related news

4-DIMETHYLAMINOBENZYLAMINE (cas 19293-58-4) as a sensitive chemiluminescence derivatization reagent for 5-hydroxyindoles and its application to their quantification in human platelet-poor plasma07/31/2019

A selective and sensitive high-performance liquid chromatographic method with chemiluminescence detection for the determination of 5-hydroxyindoles is described, based on the reaction of 5-hydroxyindoles with 4-dimethylaminobenzylamine. Serotonin, 5-hydroxyindole-3-acetic acid, 5-hydroxytryptoph...detailed

19293-58-4Relevant articles and documents

Simplified preparation of a graphene-co-shelled Ni/NiO@C nano-catalyst and its application in theN-dimethylation synthesis of amines under mild conditions

Liu, Jianguo,Ma, Longlong,Song, Yanpei,Zhang, Mingyue,Zhuang, Xiuzheng

supporting information, p. 4604 - 4617 (2021/06/30)

The development of Earth-abundant, reusable and non-toxic heterogeneous catalysts to be applied in the pharmaceutical industry for bio-active relevant compound synthesis remains an important goal of general chemical research.N-methylated compounds, as one of the most essential bioactive compounds, have been widely used in the fine and bulk chemical industries for the production of high-value chemicals. Herein, an environmentally friendly and simplified method for the preparation of graphene encapsulated Ni/NiO nanoalloy catalysts (Ni/NiO@C) was developed for the first time, for the highly selective synthesis ofN-methylated compounds using various functional amines and aldehydes under easy to handle, and industrially applicable conditions. A large number of primary and secondary amines (more than 70 examples) could be converted to the correspondingN,N-dimethylamines with the participation of different functional aldehydes, with an average yield of over 95%. A gram-scale synthesis also demonstrated a similar yield when compared with the benchmark test. In addition, it was further proved that the catalyst could easily be recycled because of its intrinsic magnetism and reused up to 10 times without losing its activity and selectivity. Also, for the first time, the tandem synthesis ofN,N-dimethylamine products in a one-pot process, using only a single earth-abundant metal catalyst, whose activity and selectivity were more than 99% and 94%, respectively, for all tested substrates, was developed. Overall, the advantages of this newly developed method include operational simplicity, high stability, easy recyclability, cost-effectiveness of the catalyst, and good functional group compatibility for the synthesis ofN-methylation products as well as the industrially applicable tandem synthesis process.

Ultra-small cobalt nanoparticles from molecularly-defined Co-salen complexes for catalytic synthesis of amines

Beller, Matthias,Chandrashekhar, Vishwas G.,Gawande, Manoj B.,Jagadeesh, Rajenahally V.,Kalevaru, Narayana V.,Kamer, Paul C. J.,Senthamarai, Thirusangumurugan,Zbo?il, Radek

, p. 2973 - 2981 (2020/03/27)

We report the synthesis of in situ generated cobalt nanoparticles from molecularly defined complexes as efficient and selective catalysts for reductive amination reactions. In the presence of ammonia and hydrogen, cobalt-salen complexes such as cobalt(ii)-N,N′-bis(salicylidene)-1,2-phenylenediamine produce ultra-small (2-4 nm) cobalt-nanoparticles embedded in a carbon-nitrogen framework. The resulting materials constitute stable, reusable and magnetically separable catalysts, which enable the synthesis of linear and branched benzylic, heterocyclic and aliphatic primary amines from carbonyl compounds and ammonia. The isolated nanoparticles also represent excellent catalysts for the synthesis of primary, secondary as well as tertiary amines including biologically relevant N-methyl amines.

Facile synthesis of controllable graphene-co-shelled reusable Ni/NiO nanoparticles and their application in the synthesis of amines under mild conditions

Cui, Zhibing,Liu, Jianguo,Liu, Qiying,Ma, Longlong,Singh, Thishana,Wang, Chenguang,Wang, Nan,Zhu, Yuting

supporting information, p. 7387 - 7397 (2020/11/19)

The primary objective of many researchers in chemical synthesis is the development of recyclable and easily accessible catalysts. These catalysts should preferably be made from Earth-abundant metals and have the ability to be utilised in the synthesis of pharmaceutically important compounds. Amines are classified as privileged compounds, and are used extensively in the fine and bulk chemical industries, as well as in pharmaceutical and materials research. In many laboratories and in industry, transition metal catalysed reductive amination of carbonyl compounds is performed using predominantly ammonia and H2. However, these reactions usually require precious metal-based catalysts or RANEY nickel, and require harsh reaction conditions and yield low selectivity for the desired products. Herein, we describe a simple and environmentally friendly method for the preparation of thin graphene spheres that encapsulate uniform Ni/NiO nanoalloy catalysts (Ni/NiO?C) using nickel citrate as the precursor. The resulting catalysts are stable and reusable and were successfully used for the synthesis of primary, secondary, tertiary, and N-methylamines (more than 62 examples). The reaction couples easily accessible carbonyl compounds (aldehydes and ketones) with ammonia, amines, and H2 under very mild industrially viable and scalable conditions (80 °C and 1 MPa H2 pressure, 4 h), offering cost-effective access to numerous functionalized, structurally diverse linear and branched benzylic, heterocyclic, and aliphatic amines including drugs and steroid derivatives. We have also demonstrated the scale-up of the heterogeneous amination protocol to gram-scale synthesis. Furthermore, the catalyst can be immobilized on a magnetic stirring bar and be conveniently recycled up to five times without any significant loss of catalytic activity and selectivity for the product.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 19293-58-4