Welcome to LookChem.com Sign In|Join Free

CAS

  • or

112-80-1

Post Buying Request

112-80-1 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

112-80-1 Usage

Unsaturated fatty acid

Oleic acid is a kind of unsaturated fatty acid with its molecular structure containing a carbon-carbon double bond, being the fatty acid that makes olein. It is one of the most extensive natural unsaturated fatty acids. Oil lipid hydrolysis can lead to oleic acid with the chemical formula being CH3 (CH2) 7CH = CH (CH2) 7 ? COOH. The glyceride of the oleic acid is one of the main ingredients of olive oil, palm oil, lard and other animal and vegetable oils. Its industrial products often contain 7~12% saturated fatty acids (palmitic acid, stearic acid) and a small amount of other unsaturated fatty acids (linoleic acid). It is colorless oily liquid with the specific gravity being 0.895 (25/25 ℃), freezing point of 4 ℃, the boiling point of 286 °C (13,332 Pa), and the refractive index of 1.463 (18 ° C). Its iodine value is 89.9 and its acidic value is 198.6. It is insoluble in water, but soluble in alcohol, benzene, chloroform, ether and other volatile oil or fixed oil. Upon exposure to air, especially when containing some impurities, it is susceptible to oxidation with its color turning into yellow or brown, accompanied with rancid odor. At normal pressure, it will be subject to decomposition 80~100 °C. It is manufactured through the saponification and acidification of animal and vegetable oils. Oleic acid is an indispensable nutrient in animal food. Its lead salt, manganese salt, cobalt salt belong to paint driers; its copper salt can be used as fish net preservatives; its aluminum salt can be used as the water repellent agent of fabric as well as the thickener of some lubricants. When being epoxidized, oleic acid can produce epoxy oleate (plasticizer). Upon subjecting to oxidative cracking, it can generate azelaic acid (raw material of polyamide resin). It can be sealed. Store it on darkness. Oleic acid exists in the animal and vegetable oil fat in large amount, being mainly in the form of glyceride. Some simple oleic esters can be applied to the textile, leather, cosmetics and pharmaceutical industries. The alkali metal salt of oleic acid can be dissolved in water, being one of the main components of soap. The lead, copper, calcium, mercury, zinc and other salts of oleic acid are soluble in water. It can be used as dry lubricants, paint drying agent and waterproofing agent. Oleic acid mainly comes from nature. Oil fat containing high content of oleic acid, after subjecting to saponification and acidification separation, can produce oleic acid. Oleic acid has cis-isomers. Natural oleic acids are all cis-structure (trans-structure oleic acid can’t be absorbed by the human body) with certain effect of softening the blood vessels. It also plays an important role in the metabolism process of human and animal. However, the oleic acid synthesized by the human body itself can’t meet the needs, so we need food intake. Thus, consumption of edible oil of high oleic acid content is healthy. The above information is edited Xiao Nan of lookchem.

Physical and chemical properties

Oleic acid, also known as cis-9-octadecenoic acid, being of chemical properties of single unsaturated carboxylic acid and is widely presented in animal and vegetable oils. For example, olive oil contains about 82.6%; peanut oil contains 60.0%; sesame oil contains 47.4%; soybean oil contains 35.5%; sunflower seed oil contains 34.0%; cottonseed oil contains 33.0%; rapeseed oil contains 23.9%; safflower oil contains 18.7%; the content in the tea oil can be as high as 83%; in animal oil: lard oil contains about 51.5%; butter contains 46.5 %; whale oil contains 34.0%; cream oil contains 18.7%; Oleic acid has a stable (α-type) and unstable (β-type) two types. At low temperature, it can appear as crystal; at high temperature, it appears as colorless transparent oily liquid with lard odor. It has a relative molecular mass of 282.47, relative density of 0.8905 (20 ℃ liquid), M.p. of 16.3 ° C (α), 13.4 ° C (β), boiling point of 286 °C (13.3 103 Pa), 225 to 226 °C(1.33 103 Pa), 203 to 205 °C (0.677 103 Pa), and 170 to 175 °C (0.267 103 to 0.400 103 Pa), the Refractive index of 1.4582 and viscosity of 25.6 mPa ? s (30 ° C). It is insoluble in water, being soluble in benzene and chloroform. It is miscible with methanol, ethanol, ether and carbon tetrachloride. Because of containing double bond, it can be easily subject to air oxidation, thus producing bad smell with the color turning yellow. Upon using nitrogen oxides, nitric acid, mercurous nitrate and sulfurous acid for treatment, it can be converted to elaidic acid. It can be converted into stearic acid upon hydrogenation. Double bond is easy to react with halogen to produce halogen stearic acid. It can be obtained through the hydrolysis of olive oil and lard oil, followed by steam distillation and crystallization or extraction for separation. Oleic acid is an excellent solvent for other oils, fatty acids and oil-soluble substances. It can be used for the manufacture of soap, lubricants, flotation agents, such as ointment and oleate. ? Fig. 1 the vegetable oleic acid;

Determination of Unsaturation degree of Oleic Acid

Oleic acid molecules have an unsaturated double bond with the chemical properties of single unsaturated carboxylic acid. It is capable for having addition reaction bromine. Add 2 mL of CCl4 and 0.5 mL of oleic acid to a test tube and mix. Take another test tube, put into 1 mL of CCl4, add 1 drop of bromine and shake uniformly. The CCl4 of bromine solution is dropped into the CCl4 solution of oleic acid; shake the tube and the color of bromine will recede: C17H33COOH + Br2 → C17H33Br2COOH.

Oleic acid and linoleic acid

Oleic acid, linoleic acid both belong to unsaturated long-chain fatty acids. Their molecules respectively contain one and two double bonds. In addition to providing animal energy, it is also indispensable nutrients. As they can’t be synthesized through fat and carbohydrate inside the animal body, it is thus called essential fatty acids. Some animals can produce linoleic acid from arachidonic acid. These two kinds of acids are mostly existed in the vegetable oil so poultry and pigs intake of vegetable oil are not lacking of it. Recently, however, a requirement for linoleic acid has been appeared in the recently poultry feeding standards because linoleic acid will finally generate EPA (eicosapentaenoic acid) in the body metabolism. EPA is the n-6 series of fatty acids and plays an important physiological function in the body. It is the component of phospholipids composed of cell membrane. These metabolic end products started from the linoleic acid are mostly contained in fish oil. Feeding with egg chickens with fish oil containing high content of EPA, DHA can produce eggs which can reduce cholesterol after being eaten by human.

Chemical properties

It appears as colorless to pale yellow oily liquid. It is insoluble in water but soluble in benzene, chloroform and is miscible with alcohol and ether.

Uses

Different sources of media describe the Uses of 112-80-1 differently. You can refer to the following data:
1. GB 2760-96 defines it as a processing aid. It can be used as antifoaming agent, fragrance, binder, and a lubricant. It can be used for the manufacture of soap, lubricants, flotation agents, ointment and oleate, being also an excellent solvent for fatty acids and oil-soluble substances. It can be used for the precise polishing of gold, silver and other precious metals as well as polishing in electroplating industry. It can be used as analysis reagents, solvents, lubricants and flotation agent, but also applied to the sugar processing industry Oleic acid is an organic chemical raw material and can produce epoxidized oleic acid ester after epoxidation. It can be used as plastic plasticizer and for production of azelaic acid by oxidation. It is the raw material of polyamide resin. In addition, oleic acid can also be used as pesticide emulsifier, printing and dyeing auxiliaries, industrial solvents, metal mineral flotation agent, and release agent. Moreover, it can be used as the raw material for manufacture of carbon paper, round bead and typing wax paper. Various kinds of oleate products are also important derivatives of oleic acid. As a chemical reagent, it can be used as a chromatographic comparative sample and for biochemical research, detection of calcium, copper and magnesium, sulfur and other elements. It can be applied to biochemical studies. It can activate the protein kinase C in the liver cells.
2. Oleic Acid is an unsaturated fatty acid that functions as a lubricant, binder, and defoamer.
3. Oleic acid is a monounsaturated omega-9 fatty acid. Oleic Acid is obtained by the hydrolysis of various animal and vegetable fats and oils. Oleic Acid is used as an emulsifying or solubilizing agent i n aerosol products.
4. oleic acid is also known as omega-9. oleic acid can improve the skinpenetration abilities of a preparation’s other components. An essential fatty acid, it is obtained from various animal and vegetable fats and oils, and may be mildly irritating to the skin.

Benefits

Oleic acid is a fatty acid found in animal and vegetable oils. Oleic acid is a mono-saturated fat generally believed to be good for one's health. Indeed, it is the chief fatty acid found in olive oil, comprising 55 to 85 percent of the important substance, which is commonly used in Mediterranean cuisine and has been hailed for its therapeutic characteristics since antiquity. Modern studies support the notion of the benefits of consuming olive oil, since evidence suggests that oleic acid helps lower levels of harmful low-density lipoproteins (LDLs) in the bloodstream, while leaving levels of beneficial high-density lipoproteins (HDLs) unchanged. Found also in significant quantities in canola, cod liver, coconut, soybean, and almond oils, oleic acid can be consumed from a variety of sources, some of which may soon contain even higher levels of the valuable fatty acid due to the efforts of genetic engineers. Oleic acid occurs naturally in greater quantities than any other fatty acid. It is present as glycerides in most fats and oils. High concentrations of oleic acid can lower blood levels of cholesterol. It is used in the food industry to make synthetic butters and cheeses. It is also used to flavor baked goods, candy, ice cream, and sodas. According to the American Diabetes Association, more than 25 million Americans have diabetes. In addition, 7 million have undiagnosed diabetes, and 79 million others have prediabetes. In a study published in February 2000 in the medical journal "QJM," researchers in Ireland found that diets rich in oleic acid improved the participants' fasting plasma glucose, insulin sensitivity and blood circulation. Lower fasting glucose and insulin levels, along with enhanced blood flow, suggest better diabetes control and less risk for other diseases. For millions of people with diagnosed diabetes and prediabetes, consuming foods rich in oleic acid may be beneficial in controlling the disease.

Preparation

Different sources of media describe the Preparation of 112-80-1 differently. You can refer to the following data:
1. (1) extract oleic acid directly from the vegetable oil, namely, apply saponification for extraction, upon stirring, send the oil into the steam to make the temperature rise to 80~100 °C, then add alkaline solution to hydrolyze the oil fat. After hydrolysis, we can obtain mixed fatty acids. Further apply distillation and cooling so that they are separated. This method demands large labor intensity, energy consumption, alkali consumption and is generally not used. (2) Take vegetable oil or animal oil as raw material; apply atmospheric catalytic hydrolysis for preparation of oleic acid. For the catalyst, we can also choose alkyl benzene sulfonic acid. Alternatively, we can apply intermittent pressure catalytic cracking method using zinc oxide as the catalyst at a pressure of 10.13 × 105~35.46 × 105 Pa and temperature of 150~230 °C. We can also apply continuous, backwash and high pressure lysis under the pressure of 5~5.2MPa and temperature of 260 ℃. For the catalyst, we can also use zinc oxide. This method can produce higher efficiency according to the previous two kinds, but being not suitable for oil fat of higher unsaturated degree and high content of hydroxy. Using the above three methods, we can prepare mixed fatty acids, and then conduct separation and refinement. First apply distillation for crude fraction, and the distillation was carried out under reduced pressure (0.133 103 to 1.07 103 Pa). Maintain the distillation temperature not exceed 260 °C. The distilled fatty acid is further subject to rectification using the difference between the boiling points of the fatty acids. We can also conduct refinement using crystallization method based on the melting points of various kinds of fatty acids. We can also apply solvent extraction for refining. (3) Synthetic oleic acid. In 1925, people had already used ethyl acetoacetate as raw material for the synthesis of oleic acid. With the development of petrochemical industry, synthetic oleic acid process has also been developed. We can prepare oleic acid from petroleum olefin.
2. Obtained from fats.

Toxicity

It is natural fatty acids, being non-toxic. It can be safely used in food (FDA, §172.862, 2000). LD50: 74 g/kg (rat, oral).

Usage limitation

FEMA (mg/kg): soft drinks 0.25 to 0.40, cold drinks 30, candy 3.5, baked food 25, seasoning 0.02.

Production method

Oleic acid and other fatty acids together, are presented in all kinds of animal and vegetable oil fats in the form of glycerides. In animal fats, oleic acid can account for about 40-50% of the fatty acids. Its content in the vegetable oil can vary largely with the content in tea oil being as high as 83%, being 54% in peanut oil while the coconut oil only contains about 5-6%. Oleic acid is the co-product upon the production of stearic acid. The industrial stearic acid and industrial oleic acid actually both contain other fatty acids. There are many oil fats raw materials used for the production of stearic acid and oleic acid. The industry generally take mixed fat formulations, such as 30% melting beef tallow, 10% melting lard, 40% of bone oil and 20% of cottonseed oil. In the mixed fatty acid obtained through refinement and hydrolysis of oil fat, the difference of the melting point between the saturated and unsaturated acid is large. The yield of stearic acid and oleic acid depends mainly on the oil ester formula. Under normal circumstances, cold compressing can give 30-50% oleic acid and 50-70% stearic acid. Put the animal and vegetable oils and emulsions to hydrolysis at 105 ℃; remove the stearic acid after one step of compressing. Separate out the crude oleic acid and conduct dehydration, distillation and freezing; then conduct the second time compressing to remove palmitic acid, and finally obtain the finished product through refinement and dehydration. This method can be applied for co-production of stearic acid. For the same logic, use oleic acid for production of stearic acid will also produce oleic acid. Fixed consumption amount of raw materials: animal and vegetable oils and fats: 1950 kg/t, sulfuric acid (98%) 210kg/t. Use oil fat containing a certain amount of oleic acid as raw materials, for example, tallow, lard, palm oil and hydrolyze out the fatty acids. Use solvent to dissolve fatty acids and cool it to remove solid fatty acids and obtain the crude oleic acid. Then further dissolve it in the solvent, cooling at low temperature to crystallize the oleic acid out.

Description

Oleic acid is a monounsaturated fatty acid and a major component of membrane phospholipids that has been found in human plasma, cell membranes, and adipose tissue. It contributes approximately 17% of the total fatty acids esterified to phosphatidylcholine, the major phospholipid class in porcine platelets. Oleic acid inhibits collagen-stimulated platelet aggregation by approximately 90% when used at a concentration of 10 μg/ml. It also inhibits fMLF-induced neutrophil aggregation and degranulation by 55 and 68%, respectively, when used at a concentration of 5 μM, similar to arachidonic acid ( | 90010.1 | 10006607). Oleic acid (60 μM) induces release of intracellular calcium in human platelets. In vivo, oleic acid increases TNF-α, IL-8, IL-6, and IL-1β production, neutrophil accumulation, and apoptotic and necrotic cell death in mouse lung and has been used to induce lung injury in a mouse model of acute respiratory distress syndrome (ARDS).

Chemical Properties

Different sources of media describe the Chemical Properties of 112-80-1 differently. You can refer to the following data:
1. Oleic acid has a faint, fatty odor. This acid darkens on oxidation with a lard-like odor and taste.
2. Oleic acid, C17H33COOH, also known as red oil, elaine oil, and octadecenoic acid, is a yellowish unsaturated fatty acid with an aroma similar to lard. It is insoluble in water, but soluble in most organic solvents. Oleic acid is the main component in cooking and olive oils.It is used for making aluminum oleate, which thickens lubricating oil, and in the preparation of soaps and cosmetics.
3. Ayellowish to pale brown, oily liquid with a characteristic lard-like odor and taste. Oleic acid consists chiefly of (Ζ)-9-octadecenoic acid together with varying amounts of saturated and other unsaturated acids. It may contain a suitable antioxidant.

Occurrence

Reported found in apple, banana, cranberry, guava, grapes, melon, papaya, ginger, hop oil, ginger, beef fat, beer, rum, whiskies, cider, sherry, tea, goat milk, butterfat, celery, cheese, blue cheese, munster cheese, other cheeses, cognac, country cured ham, pork fat, potato, raspberry oil, tomato, peanut oil, coconut meat, avocado, mushroom, fenugreek, tamarind, kelp, cardamom, rice, dill seed, sake, buckwheat, malt, wort, roasted chicory root and cape gooseberry.

Definition

Different sources of media describe the Definition of 112-80-1 differently. You can refer to the following data:
1. ChEBI: An octadec-9-enoic acid in which the double bond at C-9 has Z (cis) stereochemistry.
2. cis-9-octadecenoic acid (or oleic acid) is a naturally occurring carboxylic acid present (as glycerides) in fats and oils: CH3(CH2)7CH:CH(CH2)7COOH.
3. octadecenoic acid: A straightchainunsaturated fatty acid with theformula C17H33COOH. Cis-octadec-9-enoic acid has the formulaCH3(CH2)7CH:CH(CH2)7COOH.The glycerides of this acid are foundin many natural fats and oils.
4. oleic acid: An unsaturated fattyacid with one double bond,CH3(CH2)7CH:CH(CH2)7COOH; r.d. 0.9;m.p. 13°C. Oleic acid is one of themost abundant constituent fattyacids of animal and plant fats, occurringin butterfat, lard, tallow,groundnut oil, soya-bean oil, etc.Its systematic chemical name is cisoctadec-9-enoic acid.

Production Methods

Oleic acid is obtained by the hydrolysis of various animal and vegetable fats or oils, such as olive oil, followed by separation of the liquid acids. It consists chiefly of (Ζ)-9-octadecenoic acid. Oleic acid that is to be used systemically should be prepared from edible sources.

General Description

Colorless to pale yellow liquid with a mild odor. Floats on water.

Air & Water Reactions

Keep cis-9-Octadecenoic acid well closed; protect cis-9-Octadecenoic acid from air and light. . May form peroxides upon exposure to air. This is taken to account for an explosion that occurred, by the mixing of the acid with aluminum, [J. Chem. Educ., 1956, 36, 308]. Water Insoluble.

Reactivity Profile

cis-9-Octadecenoic acid is a carboxylic acid. Carboxylic acids donate hydrogen ions if a base is present to accept them. They react in this way with all bases, both organic (for example, the amines) and inorganic. Their reactions with bases, called "neutralizations", are accompanied by the evolution of substantial amounts of heat. Neutralization between an acid and a base produces water plus a salt. Carboxylic acids with six or fewer carbon atoms are freely or moderately soluble in water; those with more than six carbons are slightly soluble in water. Soluble carboxylic acid dissociate to an extent in water to yield hydrogen ions. The pH of solutions of carboxylic acids is therefore less than 7.0. Many insoluble carboxylic acids react rapidly with aqueous solutions containing a chemical base and dissolve as the neutralization generates a soluble salt. Carboxylic acids in aqueous solution and liquid or molten carboxylic acids can react with active metals to form gaseous hydrogen and a metal salt. Such reactions occur in principle for solid carboxylic acids as well, but are slow if the solid acid remains dry. Even "insoluble" carboxylic acids may absorb enough water from the air and dissolve sufficiently in cis-9-Octadecenoic acid to corrode or dissolve iron, steel, and aluminum parts and containers. Carboxylic acids, like other acids, react with cyanide salts to generate gaseous hydrogen cyanide. The reaction is slower for dry, solid carboxylic acids. Insoluble carboxylic acids react with solutions of cyanides to cause the release of gaseous hydrogen cyanide. Flammable and/or toxic gases and heat are generated by the reaction of carboxylic acids with diazo compounds, dithiocarbamates, isocyanates, mercaptans, nitrides, and sulfides. Carboxylic acids, especially in aqueous solution, also react with sulfites, nitrites, thiosulfates (to give H2S and SO3), dithionites (SO2), to generate flammable and/or toxic gases and heat. Their reaction with carbonates and bicarbonates generates a harmless gas (carbon dioxide) but still heat. Like other organic compounds, carboxylic acids can be oxidized by strong oxidizing agents and reduced by strong reducing agents. These reactions generate heat. A wide variety of products is possible. Like other acids, carboxylic acids may initiate polymerization reactions; like other acids, they often catalyze (increase the rate of) chemical reactions.

Health Hazard

Industrial use of compound involves no known hazards. Ingestion causes mild irritation of mouth and stomach. Contact with eyes or skin causes mild irritation.

Fire Hazard

cis-9-Octadecenoic acid is combustible.

Pharmaceutical Applications

Oleic acid is used as an emulsifying agent in foods and topical pharmaceutical formulations. It has also been used as a penetration enhancer in transdermal formulations,to improve the bioavailability of poorly water-soluble drugs in tablet formulations, and as part of a vehicle in soft gelatin capsules, in topical microemulsion formulations,in oral self-emulsifying drug delivery systems,in oral mucoadhesive patches,and in a metered dose inhaler.Oleic acid was shown to be an important factor in the hypoglycemic effect produced by multiple emulsions containing insulin intended for intestinal delivery of insulin. The phase behavior of sonicated dispersions of oleic acid has been described,and mechanisms for the topical penetrationenhancing actions of oleic acid have been presented. Oleic acid has been reported to act as an ileal ‘brake’ that slows down the transit of luminal contents through the distal portion of the small bowel. Oleic acid labeled with 131I and 3H is used in medical imaging.

Biochem/physiol Actions

Oleic acid is a colourless, odourless fatty acid that blocks the glucose production and food intake when administered intracerebroventricularly.

Safety Profile

Poison by intravenous route. Mildly toxic by ingestion. Mutation data reported. A human skin and eye irritant. Questionable carcinogen with experimental tumorigenic data. Combustible when exposed to heat or flame. To fight fire, use CO2, dry chemical. The peroxidzed acid explodes on contact with aluminum. Potentially dangerous reaction with perchloric acid + heat. When heated to decomposition it emits acrid smoke and irritating fumes.

Safety

Oleic acid is used in oral and topical pharmaceutical formulations. In vitro tests have shown that oleic acid causes rupture of red blood cells (hemolysis), and intravenous injection or ingestion of a large quantity of oleic acid can therefore be harmful. The effects of oleic acid on alveolar and buccal epithelial cells in vitro have also been studied; the in vitro and in vivo effects of oleic acid on rat skin have been reported. Oleic acid is a moderate skin irritant; it should not be used in eye preparations. An acceptable daily intake for the calcium, sodium, and potassium salts of oleic acid was not specified by the WHO since the total daily intake of these materials in foods was such that they did not pose a hazard to health. LD50 (mouse, IV): 0.23 g/kg LD50 (rat, IV): 2.4 mg/kg LD50 (rat, oral): 74 g/kg

Carcinogenicity

Some recent studies suggested that oleic acid may decrease the incidence of mammary gland tumors of some rodent species. In a reviewof several fatty acids, Ip concludes that there is little evidence for the protective effect of oleic acid on the development of cancer.

storage

On exposure to air, oleic acid gradually absorbs oxygen, darkens in color, and develops a more pronounced odor. At atmospheric pressure, it decomposes when heated at 80–100°C. Oleic acid should be stored in a well-filled, well-closed container, protected from light, in a cool, dry place.

Purification Methods

Purify the acid by fractional crystallisation from its melt, followed by molecular distillation at 10 -3mm, or by conversion to its methyl ester, the free acid can be crystallised from acetone at -40o to -45o (12mL/g). For purification by the use of lead and lithium salts, see Keffler and McLean [J Soc Chem Ind (London) 54 176T 1935]. Purification based on direct crystallisation from acetone is described by Brown and Shinowara [J Am Chem Soc 59 6 1937, pK White J Am Chem Soc 72 1857 1950]. [Beilstein 2 H 463, 2 I 198, 2 II 429, 2 III 1387, 2 IV 1641.]

Incompatibilities

Incompatible with aluminum, calcium, heavy metals, iodine solutions, perchloric acid, and oxidizing agents. Oleic acid reacts with alkalis to form soaps.

Regulatory Status

GRAS listed. Included in the FDA Inactive Ingredients Database (inhalation and nasal aerosols, tablets, topical and transdermal preparations). Included in nonparenteral medicines (metered dose inhalers; oral capsules; oral prolonged release granules; topical creams and gels) licensed in the UK. Included in the Canadian List of Acceptable Non-medicinal Ingredients.

Check Digit Verification of cas no

The CAS Registry Mumber 112-80-1 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 1,1 and 2 respectively; the second part has 2 digits, 8 and 0 respectively.
Calculate Digit Verification of CAS Registry Number 112-80:
(5*1)+(4*1)+(3*2)+(2*8)+(1*0)=31
31 % 10 = 1
So 112-80-1 is a valid CAS Registry Number.
InChI:InChI=1/C18H34O2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18(19)20/h9-10H,2-8,11-17H2,1H3,(H,19,20)/b10-9-

112-80-1 Well-known Company Product Price

  • Brand
  • (Code)Product description
  • CAS number
  • Packaging
  • Price
  • Detail
  • TCI America

  • (O0180)  Oleic Acid  >99.0%(GC)(T)

  • 112-80-1

  • 5mL

  • 455.00CNY

  • Detail
  • TCI America

  • (O0180)  Oleic Acid  >99.0%(GC)(T)

  • 112-80-1

  • 25mL

  • 1,380.00CNY

  • Detail
  • Alfa Aesar

  • (31997)  Oleic acid, 99%   

  • 112-80-1

  • 5g

  • 496.0CNY

  • Detail
  • Alfa Aesar

  • (31997)  Oleic acid, 99%   

  • 112-80-1

  • 25g

  • 1964.0CNY

  • Detail
  • Alfa Aesar

  • (31997)  Oleic acid, 99%   

  • 112-80-1

  • 100g

  • 5890.0CNY

  • Detail
  • Alfa Aesar

  • (A16663)  Oleic acid, tech. 90%   

  • 112-80-1

  • 1000ml

  • 388.0CNY

  • Detail
  • Alfa Aesar

  • (A16663)  Oleic acid, tech. 90%   

  • 112-80-1

  • 5000ml

  • 1311.0CNY

  • Detail
  • Sigma-Aldrich

  • (PHR1586)  Oleic Acid  pharmaceutical secondary standard; traceable to USP, PhEur

  • 112-80-1

  • PHR1586-1G

  • 890.37CNY

  • Detail
  • Sigma-Aldrich

  • (75090)  Oleicacid  analytical standard

  • 112-80-1

  • 75090-5ML

  • 549.90CNY

  • Detail
  • Sigma-Aldrich

  • (75090)  Oleicacid  analytical standard

  • 112-80-1

  • 75090-25ML

  • 2,149.29CNY

  • Detail
  • Sigma-Aldrich

  • (Y0001479)  Oleicacid  European Pharmacopoeia (EP) Reference Standard

  • 112-80-1

  • Y0001479

  • 1,880.19CNY

  • Detail
  • USP

  • (1478130)  Oleicacid  United States Pharmacopeia (USP) Reference Standard

  • 112-80-1

  • 1478130-1G

  • 4,662.45CNY

  • Detail

112-80-1SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 10, 2017

Revision Date: Aug 10, 2017

1.Identification

1.1 GHS Product identifier

Product name oleic acid

1.2 Other means of identification

Product number -
Other names oleicacidamide-heptaglycolether

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only. Surfactants
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:112-80-1 SDS

112-80-1Related news

Research articleEnzymatic esterification of Oleic acid (cas 112-80-1) by Candida rugosa lipase immobilized onto biochar08/27/2019

The immobilization of Candida rugosa lipase (CRL) onto biochar was studied in a series of batch experiments. CRL sorption behavior was evaluated as a function of pH, enzyme concentration, temperature and ionic strength. As the immobilized lipase was used for the catalytic esterification of oleic...detailed

Underwater wettability of Oleic acid (cas 112-80-1) on TiO2 photocatalyst surface08/26/2019

Rough and flat titanium dioxide (TiO2) surfaces were prepared, and the effect of water pH on the underwater wettability of oleic acid on the TiO2 surfaces was investigated. The underwater contact angle of oleic acid on the relatively flat TiO2 surface depended on the pH of water in the range pH ...detailed

Development and thermal characteristics of a novel composite Oleic acid (cas 112-80-1) for cold storageDéveloppement et caractéristiques thermiques d’un nouvel acide oléique composite pour le stockage frigorifique☆08/25/2019

This paper presents a novel composite material for cold storage. Oleic acid is selected as phase change material whereas carbon coated aluminum is adopted as additive. Thermal conductivities and viscosities of samples are investigated by light flash method and viscometer. Phase change temperatur...detailed

Esterification of Oleic acid (cas 112-80-1) to biodiesel catalyzed by a highly acidic carbonaceous catalyst08/23/2019

Carbonaceous catalyst, with a variety of acid sites, was successfully synthesized by a two-step method at low temperature. The synthesized catalyst (Zr-SO3[email protected]) was characterized by elemental analysis, XRD, ICP-OES, FT-IR, BET, SEM-EDX and Boehm titration. It had high total acid con...detailed

Hydrodeoxygenation of Oleic acid (cas 112-80-1) and palmitic acid to hydrocarbon-like biofuel over unsupported Ni-Mo and Co-Mo sulfide catalysts08/21/2019

Second generation biodiesel, so-called bio-hydrogenated diesel (BHD), can be produced from hydrotreatment of vegetable oils. The hydrogenation (HDO) of oleic acid and palmitic acid as model compounds of palm oil over unsupported Ni-Mo and Co-Mo sulfide catalysts was performed in a Parr reactor t...detailed

112-80-1Relevant articles and documents

Isoflavone glycosides from aerial parts of Artemisia absinthium

Ahamad,Naquvi,Ali,Mir

, p. 996 - 1000 (2014)

Two new isoflavone glycosides, designated as artemisia bis-isoflavonyl dirhamnoside and artemisia isoflavonyl glucosyl diester, have been isolated from the aerial parts of A. absinthium and their structures established as 7a,7b-bis-[(5a-hydroxy-3′a,4′a-dimethoxyisoflavonyl) (5b,4′b-dihydroxy-3′b-methoxyisoflavonyl)]-4′b-α- Drhamnopyranosyl-(4 → 1)-α-D-rhamnopyranoside and 7,4′-dihydroxyisoflavonyl-7-β-D-glucopyranosyl-(2 → 1)-β-D-glucopyranosyl-(2 → 1)-β-D-glucopyranosyl-(2 → 1)-β-D-glucopyranosyl-6d-(octadec-9′″-enoate)-2d-7″, 11″,15″-trimethylpentadecan-3″,15″-dioic acid-1″-oate on the basis of chemical reactions and spectral data analysis.

Hydrothermal deoxygenation of triglycerides over Pd/C aided by in situ hydrogen production from glycerol reforming

Hollak, Stefan A. W.,Ari?ns, Maxim A.,De Jong, Krijn P.,Van Es, Daan S.

, p. 1057 - 1062 (2014)

A one-pot catalytic hydrolysis-deoxygenation reaction for the conversion of unsaturated triglycerides and free fatty acids to linear paraffins and olefins is reported. The hydrothermal deoxygenation reactions are performed in hot compressed water at 250 °C over a Pd/C catalyst in the absence of external H2. We show that aqueous-phase reforming (APR) of glycerol and subsequent water-gas-shift reaction result in the in situ formation of H 2. While this has a significant positive effect on the deoxygenation activity, the product selectivity towards high-value, long-chain olefins remains high. With a little H2elp from my friends: A one-pot hydrolysis-deoxygenation reaction for triglycerides and free fatty acids, which is of particular interest for the production of biofuels and value-added chemicals from nonedible or waste fats and oils, is reported. The reaction is performed over palladium on carbon (Pd/C) at 250 °C without additional H2. Instead, in situ H2 production occurs through glycerol reforming and subsequent water-gas-shift reaction with a positive effect on the deoxygenation activity.

Kinetics and pathways for an algal phospholipid (1,2-dioleoyl-sn-glycero-3- phosphocholine) in high-temperature (175-350 °c) water

Changi, Shujauddin,Savage, Phillip E.,Matzger, Adam J.

, p. 2856 - 2867,12 (2012)

We examined the behavior of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) in high-temperature water at 175, 200, 225, and 350 °C. DOPC hydrolyzed to give oleic acid and a number of phosphorus-containing products. The hydrolysis was catalyzed by oleic and phosphoric acids, which were also reaction products. DOPC formed 1-acyl and 2-acyl lyso-phosphatidylcholine (LPC) along with oleic acid as primary products. LPC subsequently formed other phosphorus-containing intermediates, which finally led to phosphoric acid as the ultimate P-containing product. At 350 °C, phosphoric acid and oleic acid were the only products observed. We observed an ester of oleic acid and glycerol (9-octadecenoic-2,3- dihydroxypropyl ester), which likely formed via the hydrolysis of LPC. A reaction network is proposed to explain the formation of the observed products. A quantitative kinetics model based on the proposed pathways was consistent with the experimental data.

-

Jensen et al.

, p. 580 (1970)

-

Radical nitrile transfer with methanesulfonyl cyanide or P-toluenesulfonyl cyanide to carbon radicals generated from the acyl derivatives of N-hydroxy-2-thiopyridone

Barton,Jaszberenyi,Theodorakis

, p. 3321 - 3324 (1991)

Reaction of methanesulfonyl cyanide or p-toluenesulfonyl cyanide with carbon radicals generated from the acyl derivatives of N-hydroxy-2-thiopyridone gives the corresponding nitriles in high yield. A mechanistic scheme is suggested.

Swern,Scanlan,Roe

, (1946)

Chemical constituents from the antitumor fraction of trachyrhamphus serratus

Wang, Mengyue,He, Yunjin,Nie, Yuxiao,Li, Xiaobo

, p. 465 - 466 (2011)

-

Fatty acid eutectic mixtures and derivatives from non-edible animal fat as phase change materials

Gallart-Sirvent, Pau,Martín, Marc,Villorbina, Gemma,Balcells, Mercè,Solé, Aran,Barrenche, Camila,Cabeza, Luisa F.,Canela-Garayoa, Ramon

, p. 24133 - 24139 (2017)

A set of compounds from non-edible fat waste was prepared and their thermal behavior was studied. The fat was hydrolyzed and crystallized in a simple and robust process to yield palmitic acid-stearic acid (PA-SA) mixtures. The PA-SA mass ratios determined by GC-FID (gas chromatography-flame ionization detection) were similar to those reported for eutectic mixtures of PCMs (phase change materials). DSC (differential scanning calorimetry) results indicated that the melting and solidification temperatures were around 55 °C and 52 °C and the latent heat of the crystallized fractions measured was around 180 kJ kg-1. The thermal cycling reliability of the eutectic mixtures was also tested during 1000 melting/freezing cycles. The loss in melting and solidification enthalpies was below 14% in all mixtures showing a promising behavior for PCM applications. Additionally, the unsaturated fatty acids were recovered and transformed to threo-9,10-dihydroxystearic acid (DHSA) and some of their inorganic salts, which were analyzed by FT-IR (Fourier transform-infrared spectroscopy) and tested for the first time using the DSC technique.

Antiparasitic Ovalicin Derivatives from Pseudallescheria boydii, a Mutualistic Fungus of French Guiana Termites

Elie, Nicolas,Eparvier, Véronique,Grayfer, Tatyana,Grellier, Philippe,Hebra, Téo,Leman-Loubière, Charlotte,Sorres, Jonathan,Stien, Didier,Touboul, David

, (2022/02/19)

Social insects are in mutualism with microorganisms, contributing to their resistance against infectious diseases. The fungus Pseudallescheria boydii SNB-CN85 isolated from termites produces ovalicin derivatives resulting from the esterification of the less hindered site of the ovalicin epoxide by long-chain fatty acids. Their structures were elucidated using spectroscopic analysis and semisynthesis from ovalicin. For ovalicin, these compounds displayed antiprotozoal activities against Plasmodium falciparum and Trypanosoma brucei, with IC50 values of 19.8 and 1.1 μM, respectively, for the most active compound, i.e., ovalicin linoleate. In parallel, metabolomic profiling of a collection of P. boydii strains associated with termites made it possible to highlight this class of compounds together with tyroscherin derivatives in all strains. Finally, the complete genome of P. boydii strains was obtained by sequencing, and the cluster of potential ovalicin and ovalicin biosynthesis genes was annotated. Through these metabolomic and genomic analyses, a new ovalicin derivative named boyden C, in which the 6-membered ring of ovalicin was opened by oxidative cleavage, was isolated and structurally characterized.

Biochemical and biophysical characterisation of a small purified lipase from Rhizopus oryzae ZAC3

Ayinla, Zainab A.,Ademakinwa, Adedeji N.,Gross, Richard A.,Agboola, Femi K.

, (2021/02/16)

The characteristics of a purified lipase from Rhizopus oryzae ZAC3 (RoL-ZAC3) were investigated. RoL-ZAC3, a 15.8 kDa protein, which was optimally active at pH 8 and 55 °C had a half-life of 126 min at 60 °C. The kinetic parameters using p-nitrophenylbuty

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 112-80-1