Welcome to LookChem.com Sign In|Join Free

CAS

  • or

115730-30-8

Post Buying Request

115730-30-8 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

115730-30-8 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 115730-30-8 includes 9 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 6 digits, 1,1,5,7,3 and 0 respectively; the second part has 2 digits, 3 and 0 respectively.
Calculate Digit Verification of CAS Registry Number 115730-30:
(8*1)+(7*1)+(6*5)+(5*7)+(4*3)+(3*0)+(2*3)+(1*0)=98
98 % 10 = 8
So 115730-30-8 is a valid CAS Registry Number.

115730-30-8Relevant articles and documents

Chemoselective reduction of quinoline over Rh-C60 nanocatalysts

Luo, Zhishan,Min, Yuanyuan,Nechiyil, Divya,Bacsa, Wolfgang,Tison, Yann,Martinez, Hervé,Lecante, Pierre,Gerber, Iann C.,Serp, Philippe,Axet, M. Rosa

, p. 6884 - 6898 (2019)

The design and engineering of heterogeneous nanocatalysts that are both highly active and selective for hydrogenation reactions constitute a crucial challenge. In that context, herein a series of Rh-C60 nanocatalysts have been synthesized via the decomposition of an organometallic rhodium complex in the presence of fullerene C60 under a H2 atmosphere. Rhodium atomically dispersed or rhodium nanoparticles on Rh-C60 spherical fulleride particles were produced by tuning the Rh/C60 molar ratio. Significant charge transfer between rhodium and C60 was evidenced through Raman and X-ray photoelectron spectroscopy, which indicates electron-deficient Rh species. The resulting heterostructured nanomaterials were applied successfully in the catalytic hydrogenation of quinoline, exhibiting excellent activity and producing selectively the partially hydrogenated product, 1,2,3,4-tetrahydroquinoline. Density functional theory (DFT) calculations show that the hydride coverage of the Rh NPs plays a key role in the adsorption modes of quinoline and 1,2,3,4-tetrahydroquinoline on the surface of the NPs, and that these adsorption modes are modulated by the presence of fullerene C60, thus affecting the activity and selectivity obtained with this rhodium based catalyst.

Organometallic Synthesis of Bimetallic Cobalt-Rhodium Nanoparticles in Supported Ionic Liquid Phases (CoxRh100?x@SILP) as Catalysts for the Selective Hydrogenation of Multifunctional Aromatic Substrates

Rengshausen, Simon,Van Stappen, Casey,Levin, Natalia,Tricard, Simon,Luska, Kylie L.,DeBeer, Serena,Chaudret, Bruno,Bordet, Alexis,Leitner, Walter

, (2020/12/22)

The synthesis, characterization, and catalytic properties of bimetallic cobalt-rhodium nanoparticles of defined Co:Rh ratios immobilized in an imidazolium-based supported ionic liquid phase (CoxRh100?x@SILP) are described. Following an organometallic approach, precise control of the Co:Rh ratios is accomplished. Electron microscopy and X-ray absorption spectroscopy confirm the formation of small, well-dispersed, and homogeneously alloyed zero-valent bimetallic nanoparticles in all investigated materials. Benzylideneacetone and various bicyclic heteroaromatics are used as chemical probes to investigate the hydrogenation performances of the CoxRh100?x@SILP materials. The Co:Rh ratio of the nanoparticles is found to have a critical influence on observed activity and selectivity, with clear synergistic effects arising from the combination of the noble metal and its 3d congener. In particular, the ability of CoxRh100?x@SILP catalysts to hydrogenate 6-membered aromatic rings is found to experience a remarkable sharp switch in a narrow composition range between Co25Rh75 (full ring hydrogenation) and Co30Rh70 (no ring hydrogenation).

Nano-Ni-MOFs: High Active Catalysts on the Cascade Hydrogenation of Quinolines

Yun, Ruirui,Ma, Zi-Wei,Hu, Yang,Zhan, Feiyang,Qiu, Chuang,Zheng, Baishu,Sheng, Tian

, p. 2445 - 2451 (2021/01/05)

Abstract: The reduction of nitrogen-containing heterocyclic compounds in aqueous medium under mild condition is quite challenging. In view of metal–organic frameworks (MOFs) possess adjustable pore size and modifiable organic linkers, MOFs could be used in heterogeneous catalysis. Herein, Three Nano-Ni-MOFs, MOF-74-Ni, MOF-69-Ni, and Ni–NH2 (constructed from similar ligands and Ni2+ ions) are introduced for hydrogenating of azacyclo-compounds. As expected, Ni–NH2 shows outstanding activity of hydrogenation of quinoline under mild conditions, due to the moderate pore size and the modified –NH2 function group, which makes the substrate anchored on the surface of the framework facilitate the following catalysis process. Theoretical calculations identified that the –NH2 group at the catalyst facilitates the H2 heterolytic dissociation for the hydrogenation reactions. Graphic Abstract: Compared to MOF-74-Ni and MOF-69-Ni, the catalyst of Ni–NH2 shows outstanding activity of hydrogenation of quinoline, due to the modified –NH2 function group which makes the substrate anchored on the surface of the framework facilitate the following catalysis process[Figure not available: see fulltext.]

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 115730-30-8