Welcome to LookChem.com Sign In|Join Free

CAS

  • or

119785-99-8

Post Buying Request

119785-99-8 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier
  • [(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-2-[[hydroxy-[hydroxy-[3-hydroxy-3-[2-[2-[(E)-3-(4-hydroxyphenyl)prop-2-enoyl]sulfanylethylcarbamoyl]ethylcarbamoyl]-2,2-dimethyl-propoxy]phosphoryl]oxy-p

    Cas No: 119785-99-8

  • USD $ 2.0-2.0 / Kilogram

  • 1 Kilogram

  • 10000000 Kilogram/Year

  • TAIZHOU ZHENYU BIOTECHNOLOGY CO., LTD
  • Contact Supplier
  • [(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-2-[[hydroxy-[hydroxy-[3-hydroxy-3-[2-[2-[(E)-3-(4-hydroxyphenyl)prop-2-enoyl]sulfanylethylcarbamoyl]ethylcarbamoyl]-2,2-dimethyl-propoxy]phosphoryl]oxy-p

    Cas No: 119785-99-8

  • No Data

  • No Data

  • No Data

  • Xi`an Eastling Biotech Co., Ltd.
  • Contact Supplier

119785-99-8 Usage

Description

[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-2-[[hydroxy-[hydroxy-[3-hydroxy-3-[2-[2-[(E)-3-(4-hydroxyphenyl)prop-2-enoyl]sulfanylethylcarbamoyl]ethylcarbamoyl]-2,2-dimethyl-propoxy]phosphoryl]oxy-phosphoryl]oxymethyl]oxolan-3-yl]oxyphosphonic acid is a complex organic compound with a unique molecular structure characterized by its chiral centers and functional groups. It features a 4-coumaroyl-CoA moiety with a trans-geometric configuration of the double bond in the coumaroyl group. [(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-2-[[hydroxy-[hydroxy-[3-hydroxy-3-[2-[2-[(E)-3-(4-hydroxyphenyl)prop-2-enoyl]sulfanylethylcarbamoyl]ethylcarbamoyl]-2,2-dimethyl-propoxy]phosphoryl]oxy-phosphoryl]oxymethyl]oxolan-3-yl]oxyphosphonic acid has potential applications in various fields due to its unique properties and reactivity.

Uses

Used in Pharmaceutical Industry:
[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-2-[[hydroxy-[hydroxy-[3-hydroxy-3-[2-[2-[(E)-3-(4-hydroxyphenyl)prop-2-enoyl]sulfanylethylcarbamoyl]ethylcarbamoyl]-2,2-dimethyl-propoxy]phosphoryl]oxy-phosphoryl]oxymethyl]oxolan-3-yl]oxyphosphonic acid is used as a pharmaceutical intermediate for the synthesis of various drugs and drug candidates. Its unique structure and functional groups make it a versatile building block for the development of new therapeutic agents.
Used in Chemical Research:
In the field of chemical research, [(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-2-[[hydroxy-[hydroxy-[3-hydroxy-3-[2-[2-[(E)-3-(4-hydroxyphenyl)prop-2-enoyl]sulfanylethylcarbamoyl]ethylcarbamoyl]-2,2-dimethyl-propoxy]phosphoryl]oxy-phosphoryl]oxymethyl]oxolan-3-yl]oxyphosphonic acid serves as a valuable compound for studying the synthesis, reactivity, and properties of complex organic molecules. Its unique structure allows researchers to explore new reaction pathways and develop innovative synthetic methods.
Used in Material Science:
[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-2-[[hydroxy-[hydroxy-[3-hydroxy-3-[2-[2-[(E)-3-(4-hydroxyphenyl)prop-2-enoyl]sulfanylethylcarbamoyl]ethylcarbamoyl]-2,2-dimethyl-propoxy]phosphoryl]oxy-phosphoryl]oxymethyl]oxolan-3-yl]oxyphosphonic acid can be utilized in material science for the development of novel materials with specific properties. Its unique molecular structure and functional groups can be exploited to create materials with tailored characteristics, such as improved stability, reactivity, or selectivity.

Check Digit Verification of cas no

The CAS Registry Mumber 119785-99-8 includes 9 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 6 digits, 1,1,9,7,8 and 5 respectively; the second part has 2 digits, 9 and 9 respectively.
Calculate Digit Verification of CAS Registry Number 119785-99:
(8*1)+(7*1)+(6*9)+(5*7)+(4*8)+(3*5)+(2*9)+(1*9)=178
178 % 10 = 8
So 119785-99-8 is a valid CAS Registry Number.
InChI:InChI=1/C30H42N7O18P3S/c1-30(2,25(42)28(43)33-10-9-20(39)32-11-12-59-21(40)8-5-17-3-6-18(38)7-4-17)14-52-58(49,50)55-57(47,48)51-13-19-24(54-56(44,45)46)23(41)29(53-19)37-16-36-22-26(31)34-15-35-27(22)37/h3-8,15-16,19,23-25,29,38,41-42H,9-14H2,1-2H3,(H,32,39)(H,33,43)(H,47,48)(H,49,50)(H2,31,34,35)(H2,44,45,46)/b8-5+/t19-,23-,24-,25+,29-/m1/s1

119785-99-8SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 19, 2017

Revision Date: Aug 19, 2017

1.Identification

1.1 GHS Product identifier

Product name trans-4-coumaroyl-CoA

1.2 Other means of identification

Product number -
Other names S-[2-[3-[[(2R)-4-[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] (E)-3-(4-hydroxyphenyl)prop-2-enethioate

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:119785-99-8 SDS

119785-99-8Relevant articles and documents

Identification of a 4-coumarate:CoA ligase gene family in the moss, Physcomitrella patens

Silber, Martina V.,Meimberg, Harald,Ebel, Juergen

, p. 2449 - 2456 (2008)

Since the early evolution of land plants from primitive green algae, phenylpropanoid compounds have played an important role. In the biosynthesis of phenylpropanoids, 4-coumarate:CoA ligase (4CL; EC 6.2.1.12) has a pivotal role at the divergence point from general phenylpropanoid metabolism to several major branch pathways. Although higher plant 4CLs have been extensively studied, little information is available on the enzymes from bryophytes. In Physcomitrella patens, we have identified a 4CL gene family consisting of four members, taking advantage of the available EST sequences and a draft sequence of the P. patens genome. The encoded proteins of three of the genes display similar substrate utilization profiles with highest catalytic efficiency towards 4-coumarate. Interestingly, the efficiency with cinnamate as substrate is in the same range as with caffeate and ferulate. The deduced proteins of the four genes share sequence identities between 78% and 86%. The intron/exon structures are pair wise similar. Pp4CL2 and Pp4CL3 each consists of four exons and three introns, whereas Pp4CL1 and Pp4CL4 are characterized each by five exons and four introns. Pp4CL1, Pp4CL2 and Pp4CL3 are expressed in both gametophore and protonema tissue of P. patens, unlike Pp4CL4 whose expression could not be demonstrated under the conditions employed. Phylogenetic analysis suggests an early evolutionary divergence of Pp4CL gene family members. Using Streptomyces coelicolor cinnamate:CoA ligase (ScCCL) as an outgroup, the P. patens 4CLs are clearly separated from the spermatophyte proteins, but are intercalated between the angiosperm 4CL class I and class II. A comparison of three P. patens subspecies from diverse geographical locations shows high sequence identities for the four 4CL isoforms.

Chemoenzymatic synthesis and biological evaluation for bioactive molecules derived from bacterial benzoyl coenzyme a ligase and plant type III polyketide synthase

Adhikari, Kamal,Chen, Chun-Liang,Li, Tsung-Lin,Li, Yi-Shan,Lin, Kuan-Hung,Lo, I.-Wen,Rattinam, Rajesh,Wang, Yung-Lin,Wu, Chang-Jer,Zadeh, Saeid Malek

, (2020)

Plant type III polyketide synthases produce diverse bioactive molecules with a great medicinal significance to human diseases. Here, we demonstrated versatility of a stilbene synthase (STS) from Pinus Sylvestris, which can accept various non-physiological substrates to form unnatural polyketide products. Three enzymes (4-coumarate CoA ligase, malonyl-CoA synthetase and engineered benzoate CoA ligase) along with synthetic chemistry was practiced to synthesize starter and extender substrates for STS. Of these, the crystal structures of benzoate CoA ligase (BadA) from Rhodopseudomonas palustris in an apo form or in complex with a 2-chloro-1,3-thiazole-5-carboxyl-AMP or 2-methylthiazole-5-carboxyl-AMP intermediate were determined at resolutions of 1.57 ?, 1.7 ?, and 2.13 ?, respectively, which reinforces its capacity in production of unusual CoA starters. STS exhibits broad substrate promiscuity effectively affording structurally diverse polyketide products. Seven novel products showed desired cytotoxicity against a panel of cancer cell lines (A549, HCT116, Cal27). With the treatment of two selected compounds, the cancer cells underwent cell apoptosis in a dose-dependent manner. The precursor-directed biosynthesis alongside structure-guided enzyme engineering greatly expands the pharmaceutical repertoire of lead compounds with promising/enhanced biological activities.

Coenzyme A-Conjugated Cinnamic Acids – Enzymatic Synthesis of a CoA-Ester Library and Application in Biocatalytic Cascades to Vanillin Derivatives

Dippe, Martin,Bauer, Anne-Katrin,Porzel, Andrea,Funke, Evelyn,Müller, Anna O.,Schmidt, Jürgen,Beier, Maria,Wessjohann, Ludger A.

supporting information, p. 5346 - 5350 (2019/11/29)

We present a bioorthogonal method for the ligation of coenzyme A (CoA) with cinnamic acids. The reaction, which is the initial step in the biosynthesis of a multitude of bioactive secondary metabolites, is catalyzed by a promiscuous plant ligase and yields CoA conjugates with different functionalization in high purity and without formation of by-products. Its applicability in biosynthetic cascades is shown for the direct transformation of cinnamic acids into natural benzaldehydes (like vanillin) or artificial derivatives (e. g. ethylvanillin). (Figure presented.).

FERULOYL-CoA:MONOLIGNOL TRANSFERASE

-

Paragraph 0159, (2013/08/15)

The invention relates to nucleic acids encoding a feruloyl-CoA:monolignol transferase and the feruloyl-CoA:monolignol transferase enzyme that enables incorporation of monolignol ferulates, for example, including p-coumaryl ferulate, coniferyl ferulate, and sinapyl ferulate, into the lignin of plants.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 119785-99-8
  • ©2008 LookChem.com,License:ICP NO.:Zhejiang16009103 complaints:service@lookchem.com
  • [Hangzhou]86-571-87562588,87562561,87562573 Our Legal adviser: Lawyer