Welcome to LookChem.com Sign In|Join Free

CAS

  • or

128270-60-0

Post Buying Request

128270-60-0 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

128270-60-0 Usage

Anticoagulants

Bivalirudin is a kind of synthetic novel anticoagulants. It is the direct, specific and reversible inhibitor of thrombin. It was developed by the Swiss Basset (Biogen) originally. Then it was transferred to the United States Medicines Company, and approved for marketing in the United States in 2000. Its anticoagulant ingredient is a kind of 20 peptides derived from hirudin. Bivalirudin can specifically bind with catalytic site and the anion binding site of whether thrombin that is in the blood circulation or thrombus-bound thrombin, thus directly inhibiting thrombin activity. And its role is characterized by short, reversible. Early clinical studies show that the anticoagulation treatment of bivalirudin is good. And the incidence of bleeding events is low. So its use is safer than traditional heparin therapy. It is mainly used for the prevention of angioplasty interventional treatment of ischemic complications of unstable angina pectoris before and after. Bivalirudin has a inhibitory effect on soluble and thrombus-bound thrombin in vitro. That effect cannot be affected by products that are released by platelet, and it can extend plasma activated partial thromboplastin time, thrombin time and prothrombin time of normal human with a dose-dependent manner. It is suitable for percutaneous coronary intervention (PCI) unstable angina. In 2010, domestic PCI operation cases reached 300,000. The annual compound growth rate was over 30%. This showed that sales prospects of bivalirudin after the listing are considerable. Clinically experiments prove that bivalirudin is more effective than the current mainstream unfractionated heparin/low molecular weight heparin and platelet glycoprotein receptor antagonist in applications around PCI. Especially the risk of bleeding has a significant reduction, and the use safety of anticoagulants is greatly improved: 1. It can significantly reduce the incidence of bleeding in elective PCI patients. The total clinical outcome risk fell 14%. 2. It does not cause antibody-mediated thrombocytopenia. 3. Reversibly bind with thrombin. Short half-life. Hard to develop ischemic and hemorrhagic complications. 4. It is not mainly excreted through the kidneys and can be safely used in patients with renal impairment. The above information is edited by the lookchem of Duan Yalan.

Dosage

The first dose 0.75 mg/kg is injected intravenously. Then it is continuously injected intravenously with 1.75 mg/kg per hour by percutaneous coronary intervention. ACT should be monitored after first intravenous injection for 5 minutes. If necessary, 0.3mg/kg bivalirudin is injected again. After percutaneous coronary intervention treatment, it is continued to use for 4h. If necessary, 0.2 mg/kg bivalirudin per hour is continuously injected for 20h. When it is used, using 5mL water for injection to dissolve, and then using 50 mL normal saline to be diluted to 5mg/mL solution.

Adverse reactions and precautions

1. To guard against the occurrence of bleeding, including intracranial hemorrhage, thrombocytopenia. Intravenously injection should stop immediately when a sudden drop in blood pressure and blood volume. 2. Back pain, headaches, insomnia, anxiety, abdominal pain, diarrhea, nausea, vomiting, low blood pressure can be seen. When serious bivalirudin should be discontinued. Patients with renal dysfunction should reduce its dosage. 3. Patients allergic to bivalirudin and active bleeding should be banned. Women, infants, breast-feeding women should be careful to use this product. 4. Bivalirudin cannot bind with plasma proteins and red blood cells. When bivalirudin is used with heparin, warfarin, or thrombolytic drugs, it will increase the possibility of bleeding of patients. Once the excessive use, it should be discontinued. The product can be cleared by hemodialysis.

Clinical evaluation

In order to prove the efficacy and safety of bivalirudin in the treatment of patients with acute coronary syndrome (ACS), the researchers designed the ACUITY clinical research. ACUITY clinical trial was to compare the efficacy and safety of bivalirudin with traditional heparin platelet glycoprotein Ⅱb/Ⅲa inhibitor therapy in high-risk ACS patients. ACUITY results published in a recent issue of the "New England Journal of Medicine" showed that the efficacy of bivalirudin alone is same with traditional anticoagulant drugs. While preventing ischemic events, it can significantly reduce bleeding. ACUITY trial chooses 13,819 patients from 17 countries with high-risk non-ST segment elevation acute coronary syndrome. Patients were randomly divided into three group: unfractionated heparin or low molecular weight heparin and glycoprotein Ⅱb/Ⅲa inhibitor combination group, bivalirudin and glycoprotein Ⅱb/Ⅲa inhibitor combination group and bivalirudin alone group. The primary endpoint is ischemic composite endpoint occurred in 30 days (death, myocardial infarction or unplanned revascularization due to ischemia), major bleeding events and overall clinical outcomes (the sum of ischemic or serious bleeding events). The results showed that compared with heparin and glycoprotein Ⅱb/Ⅲa inhibitor combination group, the incidence of ischemic events in bivalirudin alone group did not significantly increase (7.8% vs 7.3%;. P = 0.32 ). Bleeding risk decreased 47% (3.0% vs. 5.7%; P <0.001), and the overall clinical outcomes were also improved significantly (10.1% vs.11.7%; P = 0.015). Using bivalirudin alone is not inferior to the combination of heparin and glycoprotein Ⅲb/Ⅲa inhibito. In addition, the combinations of bivalirudin and glycoprotein Ⅱb/Ⅲa inhibitor are also not inferior to heparin and glycoprotein Ⅱb/Ⅲa inhibitors, but no advantage at all. Stone, the study leader in Columbia University Medical Center Stone, believes that " for high-risk ACS patients with early intervention therapy, bivalirudin is a suitable alternative to heparin or enoxaparin when used with glycoprotein Ⅱb/Ⅲa inhibitors. Compared with the combinations of heparin and glycoprotein Ⅱb/Ⅲa inhibitors or the combinations of bivalirudin and glycoprotein Ⅱb/Ⅲa inhibitor, bivalirudin treatment can make patients to have a more significant net clinical benefit. And event-free survival in 30 days can be improved. "

Uses

Different sources of media describe the Uses of 128270-60-0 differently. You can refer to the following data:
1. Alternative medicine as ordinary heparin and platelet glycoprotein IIb/IIIa antagonists.
2. Anticoagulant; antithrombotic.

Description

Different sources of media describe the Description of 128270-60-0 differently. You can refer to the following data:
1. Bivalirudin is an inhibitor of α- and ζ-thrombin (Kis = 2.56 and 1.84 nM, respectively), enzymes that exhibit high fibrinogen-clotting activities. It is selective for α- and ζ-thrombin, lacking activity at trypsin and γ-thrombin, which lacks clotting activity, at a >1,000-fold excess of bivalirudin. Bivalirudin inhibits α-thrombin-stimulated activation of the clotting factors Factor X, Factor V, and prothrombin in contact-activated plasma at a concentration of 0.1 μM. Administration of bivalirudin (0.5-1.5 mg/kg, i.v.) reduces platelet deposition in a rat carotid endarterectomy model in a dose-dependent manner. Formulations containing bivalirudin have been used to prevent ischemic events during angioplasty for thrombus-containing lesions.
2. Bivalirudin was launched in New Zealand as an anticoagulant for i.v. treatment of patients with unstable angina undergoing percutaneous transluminal coronary angioplasty. Bivalirubin is a synthetic 20 amino acid peptide rationally modeled on hirudin (residues 53- 64), the most potent and specific naturally-occuring known inhibitor of thrombin, the enzyme that plays a key role in hemostasis and blood clot formation. This peptide is a direct thrombin inhibitor that maintains the unique bivalent binding properties of hirudin to the catalytic site and to the fibrin-recognition exosite of the enzyme, so acting directly on thrombin with high affinity and specificity. In vitro studies demonstrated that alpha- and zeta-thrombins, both with the higher fibrinogen-procoagulant activities, were inhibited. In rats receiving high doses of bivalirudin, the platelet deposition in carotide was reduced by 63% compared to controls. The results of clinical studies, conducted only in patients receiving concomitant aspirin, suggested that the use of bivalirudin was more efficacious and more predictable than unfractionated heparin, with fewer bleeding complications. Despite some unresolved developmental issues, the attractive properties of this novel agent could make it a useful alternative to heparin in a variety of coagulation disorders.

Originator

Biogen (US)

Definition

ChEBI: A synthetic peptide of 20 amino acids, comprising D-Phe, Pro, Arg, Pro, Gly, Gly, Gly, Gly, Asn, Gly, Asp, Phe, Glu, Glu, Ile, Pro, Glu, Glu, Tyr, and Leu in sequence. A congener of hirudin (a naturally occurring drug found in the saliva o the medicinal leech), it a specific and reversible inhibitor of thrombin, and is used as an anticoagulant.

Manufacturing Process

A 20 amino acid polypeptide [1], bivalirudin (hirulog) is a synthetic version of hirudin. Its amino-terminal D-Phe-Pro-Arg-Pro domain, which interacts with the active site of thrombin, is linked via four Gly residues to a dodecapeptide analogue of the carboxy-terminal of hirudin. Like hirudin, bivalirudin also forms a 1:1 stoichiometric complex with thrombin. Once bound, however, the Arg-Pro bond at the amino-terminal of bivalirudin is cleaved by thrombin, thereby restoring active site functions of the enzyme complexes of α-thrombin [2]. Hirulog-8 has the formula: H-(D-Phe)-Pro-Arg-Pro-(Gly)4-Asn-Gly-Asp-Phe- Glu-Glu-Ile-Pro-Glu-Glu-Tyr-Leu-OH. Hirulog-8 was synthesized by conventional solid-phase peptide synthesis employing an Applied Biosystems 430 A Peptide Synthesizer. This peptide was synthesized using BOC-L-Leucine- O-divinylbenzene resin. Additional t-BOC-amino acids (Peninsula Laboratories, Belmont, Calif.) used included BOC-O-2,6-dichlorobenzyl tyrosine, BOC-Lglutamic acid (γ-benzyl ester), BOC-L-proline, BOC-L-isoleucine, BOC-Lphenylalanine, BOC-L-aspartic acid (β-benzyl ester), BOC-glycine, BOC-Lasparagine, BOC-L-phenylalanine, and BOC-L-arginine. In order to achieve higher yields in synthesis, the (Gly)4 linker segment was attached in two cycles of manual addition of BOC-glycylglycine (Beckman Biosciences, Inc., Philadelphia, Pa.). After completion of synthesis, the peptide was fully deprotected and uncoupled from the divinylbenzene resin by treatment with anhydrous HF:p-cresol:ethylmethyl sulfate (10:1:1, v/v/v). Following removal from the resin, the peptide was lyophilized to dryness. Crude Hirulog-8 was purified by reverse-phase HPLC employing an Applied Biosystems 151A liquid chromatographic system and a Vydac C18 column (2.2x25 cm). The column was equilibrated in 0.1% TFA/water and developed with a linear gradient of increasing acetonitrile concentration from 0 to 80% over 45 minutes in the 0.1% TFA at a flow-rate of 4.0 ml/min. The effluent stream was monitored for absorbance at 229 nm and fractions were collected manually. We purified 25-30 mg of crude Hirulog-8 by HPLC and recovered 15-20 mg of pure peptide. The structure of purified Hirulog-8 was confirmed by amino acid and sequence analyses.

Brand name

Angiomax (Medicinova).

Therapeutic Function

Anticoagulant

Biochem/physiol Actions

Bivalirudin is a specific and reversible bivalent direct thrombin inhibitor. Bivalirudin specifically binds to both the catalytic site and to the anion-binding exosite of circulating and clot-bound thrombin.

Mechanism of action

Bivalirudin is a rapid-onset, short-acting DTI that binds to both the active site and the exosite-1 of thrombin. Unlike lepirudin, bivalirudin is a reversible inhibitor of both free thrombin and thrombin bound to fibrin. This reversibility is possible because the bound bivalirudin undergoes cleavage at the second N-terminal proline to release the portion of the drug bound to the active site. The carboxyl-terminal portion of bivalirudin dissociates from thrombin to regenerate thrombin. Bivalirudin does not bind to plasma protein.

Pharmacokinetics

Bivalirudin is administered via intravenous bolus injection, followed by continuous infusion (Table 31.4). The drug exhibits a rapid onset and a short duration of action. Bivalirudin is eliminated by renal excretion. It has been suggested that dosage adjustments be made in patients with severe renal impairment and in patients undergoing dialysis. Approximately 30% is eliminated unchanged along with proteolytic cleavage products. Because of the reversible nature of bivalirudin the drug exhibits less risk of bleeding than other antithrombotics, and there have been no reported cases of antibody formation to bivalirudin.

Clinical Use

Bivalirudin, a 20-amino-acid peptide, has been approved for use in patients with unstable angina undergoing percutaneous coronary intervention.

Drug interactions

Potentially hazardous interactions with other drugs Analgesics: increased risk of haemorrhage with IV diclofenac and ketorolac. Antiplatelets and anticoagulants: increased risk of bleeding. Thrombolytics: may increase risk of bleeding complications; enhance effect of bivalirudin.

Metabolism

As a peptide, bivalirudin is expected to undergo catabolism to its constituent amino acids, with subsequent recycling of the amino acid in the body pool. Bivalirudin is metabolised by proteases, including thrombin. The primary metabolite resulting from the cleavage of Arg3 -Pro4 bond of the N-terminal sequence by thrombin is not active because of the loss of affinity to the catalytic active site of thrombin.

references

[1]. shammas n w. bivalirudin: pharmacology and clinical applications[j]. cardiovascular drug reviews, 2005, 23(4): 345-360.

Check Digit Verification of cas no

The CAS Registry Mumber 128270-60-0 includes 9 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 6 digits, 1,2,8,2,7 and 0 respectively; the second part has 2 digits, 6 and 0 respectively.
Calculate Digit Verification of CAS Registry Number 128270-60:
(8*1)+(7*2)+(6*8)+(5*2)+(4*7)+(3*0)+(2*6)+(1*0)=120
120 % 10 = 0
So 128270-60-0 is a valid CAS Registry Number.
InChI:InChI=1/C98H138N24O33/c1-5-52(4)82(96(153)122-39-15-23-70(122)92(149)114-60(30-34-79(134)135)85(142)111-59(29-33-78(132)133)86(143)116-64(43-55-24-26-56(123)27-25-55)89(146)118-67(97(154)155)40-51(2)3)119-87(144)61(31-35-80(136)137)112-84(141)58(28-32-77(130)131)113-88(145)63(42-54-18-10-7-11-19-54)117-90(147)66(45-81(138)139)110-76(129)50-107-83(140)65(44-71(100)124)109-75(128)49-106-73(126)47-104-72(125)46-105-74(127)48-108-91(148)68-21-13-38-121(68)95(152)62(20-12-36-103-98(101)102)115-93(150)69-22-14-37-120(69)94(151)57(99)41-53-16-8-6-9-17-53/h6-11,16-19,24-27,51-52,57-70,82,123H,5,12-15,20-23,28-50,99H2,1-4H3,(H2,100,124)(H,104,125)(H,105,127)(H,106,126)(H,107,140)(H,108,148)(H,109,128)(H,110,129)(H,111,142)(H,112,141)(H,113,145)(H,114,149)(H,115,150)(H,116,143)(H,117,147)(H,118,146)(H,119,144)(H,130,131)(H,132,133)(H,134,135)(H,136,137)(H,138,139)(H,154,155)(H4,101,102,103)/t52-,57+,58-,59-,60-,61-,62-,63-,64-,65-,66-,67-,68-,69-,70-,82-/m0/s1

128270-60-0 Well-known Company Product Price

  • Brand
  • (Code)Product description
  • CAS number
  • Packaging
  • Price
  • Detail
  • Sigma

  • (SML1051)  Bivalirudin trifluoroacetate salt  ≥97% (HPLC)

  • 128270-60-0

  • SML1051-10MG

  • 858.78CNY

  • Detail
  • Sigma

  • (SML1051)  Bivalirudin trifluoroacetate salt  ≥97% (HPLC)

  • 128270-60-0

  • SML1051-50MG

  • 3,473.73CNY

  • Detail

128270-60-0SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 17, 2017

Revision Date: Aug 17, 2017

1.Identification

1.1 GHS Product identifier

Product name bivalirudin

1.2 Other means of identification

Product number -
Other names Bivalirudin Trifluoroacetate

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:128270-60-0 SDS

128270-60-0Synthetic route

Boc-D-Phe-Pro-Arg(Pbf)-Pro-Gly-Gly-Gly-Gly-Asn(Trt)-Gly-Asp(tBu)-Phe-Glu(tBu)-Glu(tBu)-Ile-Pro-Glu(tBu)-Glu(tBu)-Tyr(tBu)-Leu-OtBu

Boc-D-Phe-Pro-Arg(Pbf)-Pro-Gly-Gly-Gly-Gly-Asn(Trt)-Gly-Asp(tBu)-Phe-Glu(tBu)-Glu(tBu)-Ile-Pro-Glu(tBu)-Glu(tBu)-Tyr(tBu)-Leu-OtBu

bivalirudin
128270-60-0

bivalirudin

Conditions
ConditionsYield
With water; trifluoroacetic acid; 1-dodecylthiol at 20℃; for 1h; Reagent/catalyst;110 g
L-leucine tert-butyl ester
21691-53-2

L-leucine tert-butyl ester

N-(fluoren-9-ylmethoxycarbonyl)glycine
29022-11-5

N-(fluoren-9-ylmethoxycarbonyl)glycine

Fmoc-Arg(Pbf)-OH

Fmoc-Arg(Pbf)-OH

H-Asp-(tBu)

H-Asp-(tBu)

Boc-D-Phe-OH
18942-49-9

Boc-D-Phe-OH

Fmoc-Pro-OH
71989-31-6

Fmoc-Pro-OH

Fmoc-Glu(OtBu)-OH
71989-18-9

Fmoc-Glu(OtBu)-OH

Fmoc-Ile-OH
71989-23-6

Fmoc-Ile-OH

L-Asn(Trt)
132388-59-1

L-Asn(Trt)

bivalirudin
128270-60-0

bivalirudin

Conditions
ConditionsYield
Stage #1: L-leucine tert-butyl ester; N-Fmoc-Tyr-OH With benzotriazol-1-ol; diisopropyl-carbodiimide In 1-methyl-pyrrolidin-2-one; dichloromethane at 0 - 30℃;
Stage #2: With piperidine In 1-methyl-pyrrolidin-2-one
Stage #3: N-(fluoren-9-ylmethoxycarbonyl)glycine; Fmoc-Arg(Pbf)-OH; H-Asp-(tBu); Boc-D-Phe-OH; Fmoc-Pro-OH; Fmoc-Glu(OtBu)-OH; Fmoc-Ile-OH; L-Asn(Trt) Further stages;
Boc-D-Phe-Pro-Arg(Pbf)-Pro-Gly-Gly-Gly-Gly-Asn(Trt)-Gly-Asp(OtBu)-Phe-Glu(OtBu)-Glu(OtBu)-Ile-Pro-Glu(OtBu)-Glu(OtBu)-Tyr(tBu)-Leu-O(benzyl(3,4,5-tridihydrophtyloxy))

Boc-D-Phe-Pro-Arg(Pbf)-Pro-Gly-Gly-Gly-Gly-Asn(Trt)-Gly-Asp(OtBu)-Phe-Glu(OtBu)-Glu(OtBu)-Ile-Pro-Glu(OtBu)-Glu(OtBu)-Tyr(tBu)-Leu-O(benzyl(3,4,5-tridihydrophtyloxy))

bivalirudin
128270-60-0

bivalirudin

Conditions
ConditionsYield
With chlorotriisopropylsilane; trifluoroacetic acid In water at 20℃; for 3h; Cooling with ice;
N-(fluoren-9-ylmethoxycarbonyl)glycine
29022-11-5

N-(fluoren-9-ylmethoxycarbonyl)glycine

Fmoc-Leu-OH
35661-60-0

Fmoc-Leu-OH

Fmoc-Pro-OH
71989-31-6

Fmoc-Pro-OH

N-Fmoc L-Phe
35661-40-6

N-Fmoc L-Phe

Fmoc-(tBu)Asp-OH
71989-14-5

Fmoc-(tBu)Asp-OH

Fmoc-Glu(OtBu)-OH
71989-18-9

Fmoc-Glu(OtBu)-OH

Fmoc-Ile-OH
71989-23-6

Fmoc-Ile-OH

Fmoc-Tyr(tBu)-OH
71989-38-3

Fmoc-Tyr(tBu)-OH

L-Asn(Trt)
132388-59-1

L-Asn(Trt)

Fmoc-D-Phe-OH

Fmoc-D-Phe-OH

Nα-(9-fluorenylmethyloxycarbonyl)-Nγ-2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl-L-arginine

Nα-(9-fluorenylmethyloxycarbonyl)-Nγ-2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl-L-arginine

bivalirudin
128270-60-0

bivalirudin

Conditions
ConditionsYield
Stage #1: Fmoc-Leu-OH With N-ethyl-N,N-diisopropylamine at 90℃; for 0.0833333h; Automated synthesizer;
Stage #2: With pyrrolidine at 95℃; for 0.0138889h;
Stage #3: N-(fluoren-9-ylmethoxycarbonyl)glycine; Fmoc-Pro-OH; N-Fmoc L-Phe; Fmoc-(tBu)Asp-OH; Fmoc-Glu(OtBu)-OH; Fmoc-Ile-OH; Fmoc-Tyr(tBu)-OH; L-Asn(Trt); Fmoc-D-Phe-OH; Nα-(9-fluorenylmethyloxycarbonyl)-Nγ-2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl-L-arginine Further stages;
HCl*H-D-Phe-Pro-Arg(Pbf)-Pro-Gly-Gly-Gly-Gly-Asn(Trt)-Gly-Asp(OtBu)-Phe-Glu(OtBu)-Glu(OtBu)-Ile-Pro-Glu(OtBu)-Glu(OtBu)-Tyr(tBu)-Leu-OKb, Kb=2,4-didocosyloxybenzyl

HCl*H-D-Phe-Pro-Arg(Pbf)-Pro-Gly-Gly-Gly-Gly-Asn(Trt)-Gly-Asp(OtBu)-Phe-Glu(OtBu)-Glu(OtBu)-Ile-Pro-Glu(OtBu)-Glu(OtBu)-Tyr(tBu)-Leu-OKb, Kb=2,4-didocosyloxybenzyl

bivalirudin
128270-60-0

bivalirudin

Conditions
ConditionsYield
With chlorotriisopropylsilane; water; trifluoroacetic acid at 20℃; for 3h;

128270-60-0Downstream Products

128270-60-0Relevant articles and documents

AJIPHASE: A Highly Efficient Synthetic Method for One-Pot Peptide Elongation in the Solution Phase by an Fmoc Strategy

Takahashi, Daisuke,Inomata, Tatsuji,Fukui, Tatsuya

, p. 7803 - 7807 (2017)

We previously reported an efficient peptide synthesis method, AJIPHASE, that comprises repeated reactions and isolations by precipitation. This method utilizes an anchor molecule with long-chain alkyl groups as a protecting group for the C-terminus. To further improve this method, we developed a one-pot synthesis of a peptide sequence wherein the synthetic intermediates were isolated by solvent extraction instead of precipitation. A branched-chain anchor molecule was used in the new process, significantly enhancing the solubility of long peptides and the operational efficiency compared with the previous method, which employed precipitation for isolation and a straight-chain aliphatic group. Another prerequisite for this solvent-extraction-based strategy was the use of thiomalic acid and DBU for Fmoc deprotection, which facilitates the removal of byproducts, such as the fulvene adduct.

Protein Modification at Tyrosine with Iminoxyl Radicals

Ishiyama, Takashi,Kanai, Motomu,Maruyama, Katsuya,Oisaki, Kounosuke,Sakai, Kentaro,Seki, Yohei,Togo, Takaya

supporting information, p. 19844 - 19855 (2021/11/30)

Post-translational modifications (PTMs) of proteins are a biological mechanism for reversibly controlling protein function. Synthetic protein modifications (SPMs) at specific canonical amino acids can mimic PTMs. However, reversible SPMs at hydrophobic amino acid residues in proteins are especially limited. Here, we report a tyrosine (Tyr)-selective SPM utilizing persistent iminoxyl radicals, which are readily generated from sterically hindered oximes via single-electron oxidation. The reactivity of iminoxyl radicals with Tyr was dependent on the steric and electronic demands of oximes; isopropyl methyl piperidinium oxime 1f formed stable adducts, whereas the reaction of tert-butyl methyl piperidinium oxime 1o was reversible. The difference in reversibility between 1f and 1o, differentiated only by one methyl group, is due to the stability of iminoxyl radicals, which is partly dictated by the bond dissociation energy of oxime O-H groups. The Tyr-selective modifications with 1f and 1o proceeded under physiologically relevant, mild conditions. Specifically, the stable Tyr-modification with 1f introduced functional small molecules, including an azobenzene photoswitch, to proteins. Moreover, masking critical Tyr residues by SPM with 1o, and subsequent deconjugation triggered by the treatment with a thiol, enabled on-demand control of protein functions. We applied this reversible Tyr modification with 1o to alter an enzymatic activity and the binding affinity of a monoclonal antibody with an antigen upon modification/deconjugation. The on-demand ON/OFF switch of protein functions through Tyr-selective and reversible covalent-bond formation will provide unique opportunities in biological research and therapeutics.

PEPTIDE SYNTHESIS METHOD

-

Paragraph 0379-0380, (2018/08/20)

The present invention has an object of providing a peptide synthesis method using a carrier capable of reversibly repeating the dissolved state and the insolubilized state, wherein the problem of an amino acid active species existing in the reaction system in de-protection reaction can be easily solved. The present invention provides a peptide synthesis method comprising the following steps: a step of condensing an N-Fmoc protected amino acid with a peptide having a C-terminal protected with a carrier which is crystallized according to a change of a composition of a dissolving solvent, in the presence of a condensing agent, to obtain an N-Fmoc-C-carrier protected peptide, a step of adding an alkylamine having 1 to 14 carbon atoms or hydroxyl amine to the reaction system, a step of de-protecting the N-terminal, and a step of changing the composition of the solvent dissolving the C-carrier protected peptide, to crystallize and separate the peptide.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 128270-60-0