156767-69-0Relevant articles and documents
Synthesis and assessment of the relative toxicity of the oxidised derivatives of campesterol and dihydrobrassicasterol in U937 and HepG2 cells
O'Callaghan, Yvonne,Kenny, Olivia,O'Connell, Niamh M.,Maguire, Anita R.,McCarthy, Florence O.,O'Brien, Nora M.
, p. 496 - 503 (2013/04/24)
The cytotoxic effects of the oxidised derivatives of the phytosterols, stigmasterol and β-sitosterol, have previously been shown to be similar but less potent than those of the equivalent cholesterol oxides in the U937 cell line. The objective of the present study was to compare the cytotoxic effects of the oxidised derivatives of synthetic mixtures of campesterol and dihydrobrassicasterol in both the U937 and HepG2 cell lines. The parent compounds consisted of a campesterol: dihydrobrassicasterol mix at a ratio of 2:1 (2CMP:1DHB) and a dihydrobrassicasterol:campesterol mix at a ratio of 3:1 (3DHB:1CMP). The 2CMP:1DBH oxides were more cytotoxic in the U937 cells than the 3DBH:1CMP oxides but the difference in cytotoxicity was less marked in the HepG2 cells. The order of toxicity of the individual oxidation products was found to be similar to that previously observed for cholesterol, β-sitosterol and stigmasterol oxidation products in the U937 cell line. There was an increase in apoptotic nuclei in U937 cells incubated with the 7-keto and 7β-OH derivatives of both 2CMP:1DHB and 3DHB:1CMP and also in the presence of 3DHB:1CMP-3β,5α,6β-triol and 2CMP:1DHB-5β,6β-epoxide. An additional oxidation product synthesised from 2CMP:1DHB, 5,6,22,23-diepoxycampestane, was cytotoxic but did not induce apoptosis. These results signify the importance of campesterol oxides in the overall paradigm of phytosterol oxide cytotoxicity.
Oxidized derivatives of dihydrobrassicasterol: Cytotoxic and apoptotic potential in U937 and HepG2 cells
Kenny, Olivia,O'Callaghan, Yvonne,O'Connell, Niamh M.,McCarthy, Florence O.,Maguire, Anita R.,O'Brien, Nora M.
experimental part, p. 5952 - 5961 (2012/10/07)
The ability of phytosterol compounds to reduce plasma serum cholesterol levels in humans is well investigated. However, phytosterols are structurally similar to cholesterol with a double bond at the C5-6 position and are therefore susceptible to oxidation. Much research has been carried out on the biological effects of cholesterol oxidation products (COPs) in vitro. In contrast, there is less known about phytosterol oxidation products (POPs). From previous studies, it is apparent that oxidized derivatives of the phytosterols, β-sitosterol and stigmasterol, are cytotoxic in vitro but are less potent than their COP counterparts. In the present study, the cytotoxic and apoptotic potential of oxidized derivatives of dihydrobrassicasterol (DHB) including 5α,6α-epoxyergostan-3β-ol (α-epoxide), 5β,6β-epoxyergostan-3β-ol (β-epoxide), ergost-5-en-7-on- 3β-ol (7-keto), ergost-5-ene-3β,7β-diol (7-β-OH), and ergostane-3β,5α,6β-triol (triol) were evaluated in the U937 and HepG2 cell lines. In general, 7-keto, 7-β-OH, and triol derivatives had a significant cytotoxic impact on U937 and HepG2 cells. The oxides appear to be more toxic toward U937 cells. In line with previous findings, the POPs investigated in this study were less potent than the equivalent COPs. The results add to the body of data on the toxicity of individual POPs.