Welcome to LookChem.com Sign In|Join Free

CAS

  • or

1678-82-6

Post Buying Request

1678-82-6 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

1678-82-6 Usage

General Description

TRANS-1-ISOPROPYL-4-METHYLCYCLOHEXANE is a chemical compound with the molecular formula C10H20. It is a cycloalkane derivative that is a colorless liquid at room temperature. TRANS-1-ISOPROPYL-4-METHYLCYCLOHEXANE is commonly used in the synthesis of other organic compounds and as a solvent in various industrial processes. It is also used as a fragrance ingredient and in the production of perfumes and cosmetics. TRANS-1-ISOPROPYL-4-METHYLCYCLOHEXANE has a slightly sweet, floral odor and is considered to be relatively stable under normal conditions. It is important to handle and store this chemical with care, as it can be harmful if ingested or inhaled and can cause irritation to the skin and eyes.

Check Digit Verification of cas no

The CAS Registry Mumber 1678-82-6 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 1,6,7 and 8 respectively; the second part has 2 digits, 8 and 2 respectively.
Calculate Digit Verification of CAS Registry Number 1678-82:
(6*1)+(5*6)+(4*7)+(3*8)+(2*8)+(1*2)=106
106 % 10 = 6
So 1678-82-6 is a valid CAS Registry Number.

1678-82-6SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 17, 2017

Revision Date: Aug 17, 2017

1.Identification

1.1 GHS Product identifier

Product name 1-Methyl-trans-4-isopropylcyclohexane

1.2 Other means of identification

Product number -
Other names 1-methyl-4-(propan-2-yl)cyclohexane

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:1678-82-6 SDS

1678-82-6Relevant articles and documents

Heterogeneous supramolecular catalysis through immobilization of anionic M4L6assemblies on cationic polymers

Miyamura, Hiroyuki,Bergman, Robert G.,Raymond, Kenneth N.,Toste, F. Dean

, p. 19327 - 19338 (2020)

Although most of the currently developed supramolecular catalysts that emulate enzymatic reactivity with unique selectivity and activity through specific host-guest interactions work under homogeneous conditions, enzymes in nature can operate under heterogeneous conditions as membrane-bound enzymes. In order to develop such a heterogeneous system, an immobilized chiral supramolecular cluster Ga416 (2) was introduced into cross-linked polymers with cationic functionalities. These heterogeneous supramolecular catalysts were used in aza-Prins and aza-Cope reactions and successfully applied to continuous-flow reactions. They showed high durability and maintained high turnovers for long periods of time. In sharp contrast to the majority of examples of heterogenized homogeneous catalysts, the newly developed catalysts showed enhanced activity and robustness compared to those exhibited by the corresponding soluble cluster catalyst. An enantioenriched cluster was also immobilized to enable asymmetric catalysis, and activity and enantioselectivity of the supported chiral catalyst were maintained during recovery and reuse experiments and under a continuous-flow process. Significantly, the structure of the ammonium cations in the polymers affected stability, reactivity, and enantioselectivity, which is consistent with the hypothesis that the cationic moieties in the polymer support interact with cluster as an exohedral protecting shell, thereby influencing their catalytic performance.

Metal vapor synthesis of ultrasmall Pd nanoparticles functionalized with N-heterocyclic carbenes

Tegeder, Patricia,Marelli, Marcello,Freitag, Matthias,Polito, Laura,Lamping, Sebastian,Psaro, Rinaldo,Glorius, Frank,Ravoo, Bart Jan,Evangelisti, Claudio

, p. 12647 - 12651 (2018)

The synthesis of N-heterocyclic carbene (NHC)-stabilized palladium nanoparticles (PdNPs) by an entirely new strategy comprising the NHC functionalization of ligand-free PdNPs obtained by metal vapor synthesis is described. Detailed characterization confirms the formation of very small monodisperse PdNPs (2.3 nm) and the presence of the NHC ligand on the Pd surface. The stable NHC-functionalized PdNPs dispersed onto a carbon support showed high activity in the hydrogenation of limonene with enhanced regioselectivity in comparison to bare PdNPs on carbon.

Continuous synthesis of menthol from citronellal and citral over Ni-beta-zeolite-sepiolite composite catalyst

Er?nen, Kari,M?ki-Arvela, P?ivi,Martinez-Klimov, Mark,Muller, Joseph,Murzin, Dmitry Yu.,Peurla, Markus,Simakova, Irina,Vajglova, Zuzana

, (2022/04/03)

One-pot continuous synthesis of menthols both from citronellal and citral was investigated over 5 wt% Ni supported on H-Beta-38-sepiolite composite catalyst at 60–70 °C under 10–29 bar hydrogen pressure. A relatively high menthols yield of 53% and 49% and stereoselectivity to menthol of 71–76% and 72–74% were obtained from citronellal and citral respectively at the contact time 4.2 min, 70 °C and 20 bar. Citral conversion noticeably decreased with time-on-stream under 10 and 15 bar of hydrogen pressure accompanied by accumulation of citronellal, the primary hydrogenation product of citral, practically not affecting selectivity to menthol. A substantial amount of defuctionalization products observed during citral conversion, especially at the beginning of the reaction (ca. 1 h), indicated that all intermediates could contribute to formation of menthanes. Ni/H-Beta-38-sepiolite composite material prepared by extrusion was characterized by TEM, SEM, XPS, XRD, ICP-OES, N2 physisorption and FTIR techniques to perceive the interrelation between the physico-chemical and catalytic properties.

RhNPs supported onN-functionalized mesoporous silica: effect on catalyst stabilization and catalytic activity

Pulido-Díaz, Israel T.,Serrano-Maldonado, Alejandro,López-Suárez, Carlos César,Méndez-Ocampo, Pedro A.,Portales-Martínez, Benjamín,Gutiérrez-Alejandre, Aída,Salas-Martin, Karla P.,Guerrero-Ríos, Itzel

, p. 3289 - 3298 (2021/03/16)

Amine and nicotinamide groups grafted on ordered mesoporous silica (OMS) were investigated as stabilizers for RhNPs used as catalysts in the hydrogenation of several substrates, including carbonyl and aryl groups. Supported RhNPs on functionalized OMS were prepared by controlled decomposition of an organometallic precursor of rhodium under dihydrogen pressure. The resulting materials were characterized thoroughly by spectroscopic and physical techniques (FTIR, TGA, BET, SEM, TEM, EDX, XPS) to confirm the formation of spherical rhodium nanoparticles with a narrow size distribution supported on the silica surface. The use of nicotinamide functionalized OMS as a support afforded small RhNPs (2.3 ± 0.3 nm), and their size and shape were maintained after the catalyzed acetophenone hydrogenation. In contrast, amine-functionalized OMS formed RhNP aggregates after the catalytic reaction. The supported RhNPs could selectively reduce alkenyl, carbonyl, aryl and heteroaryl groups and were active in the reductive amination of phenol and morpholine, using a low concentration of the precious metal (0.07-0.18 mol%).

Nickel-catalyzed reductive 1,3-diene formation from the cross-coupling of vinyl bromides

Sha, Yunfei,Liu, Jiandong,Wang, Liang,Liang, Demin,Wu, Da,Gong, Hegui

supporting information, p. 4887 - 4890 (2021/06/16)

Facile construction of 1,3-dienes building upon cross-electrophile coupling of two open-chain vinyl halides is disclosed in this work, showing moderate chemoselectivities between the terminal bromoalkenes and internal vinyl bromides. The present method is mild and tolerates a range of functional groups and can be applied to the total synthesis of a tobacco fragrance solanone.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 1678-82-6