Welcome to LookChem.com Sign In|Join Free

CAS

  • or

1956-46-3

Post Buying Request

1956-46-3 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

1956-46-3 Usage

Physical form

Pale yellow to white crystalline solid

Solubility

Sparingly soluble in water

Uses

Building block in organic synthesis, reagent for preparation of other chemical compounds, production of fragrance ingredients and pharmaceutical products

Safety precautions

May be harmful if ingested or inhaled, can cause skin and eye irritation upon contact

Check Digit Verification of cas no

The CAS Registry Mumber 1956-46-3 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 1,9,5 and 6 respectively; the second part has 2 digits, 4 and 6 respectively.
Calculate Digit Verification of CAS Registry Number 1956-46:
(6*1)+(5*9)+(4*5)+(3*6)+(2*4)+(1*6)=103
103 % 10 = 3
So 1956-46-3 is a valid CAS Registry Number.

1956-46-3SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 19, 2017

Revision Date: Aug 19, 2017

1.Identification

1.1 GHS Product identifier

Product name N-(1-phenylbutylidene)hydroxylamine

1.2 Other means of identification

Product number -
Other names n-butyrophenone oxime

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:1956-46-3 SDS

1956-46-3Relevant articles and documents

Synthesis of 5-Vinyl-2-isoxazolines by Palladium-Catalyzed Intramolecular O-Allylation of Ketoximes

Fernandes, Rodney A.,Gangani, Ashvin J.,Panja, Arpita

supporting information, p. 6227 - 6231 (2021/08/18)

An efficient method for the synthesis of 5-vinyl-2-isoxazolines by Pd-catalyzed intramolecular O-allylation of ketoximes has been developed. The reaction involves Pd(0)-catalyzed π-allyl formation via leaving group ionization or Pd(II)-catalyzed allylic C-H activation followed by intramolecular nucleophilic oxime oxygen attack. This methodology has been elaborated to various value-added products by epoxidation, Wacker oxidation, cross-metathesis, hydroboration-oxidation, dihydroxylation, and catalytic hydrogenation.

AgNO3as Nitrogen Source for Cu-Catalyzed Cyclization of Oximes with Isocyanates: A Facile Route to N-2-Aryl-1,2,3-triazoles

Liang, Jingwen,Rao, Yingqi,Zhu, Weidong,Wen, Tingting,Huang, Junjie,Chen, Zhichao,Chen, Lu,Li, Yibiao,Chen, Xiuwen,Zhu, Zhongzhi

supporting information, p. 7028 - 7032 (2021/09/14)

A versatile copper-catalyzed [3 + 1 + 1] annulation of oximes and isocyanates with AgNO3 is described. In this conversion, AgNO3 and isocyanates instead of conventional azide or diazonium reagents were used as the nitrogen source. This three-component transformation was achieved by cleaving N-O/C-H/C-N bonds and building CN/N-N bonds, which provides a strategy to prepare N-2-aryl-1,2,3-triazoles with a good substrate and functional compatibility.

Photocatalyzed Triplet Sensitization of Oximes Using Visible Light Provides a Route to Nonclassical Beckmann Rearrangement Products

Zhang, Xiao,Rovis, Tomislav

supporting information, p. 21211 - 21217 (2021/12/27)

Oximes are valuable synthetic intermediates for the preparation of a variety of functional groups. To date, the stereoselective synthesis of oximes remains a major challenge, as most current synthetic methods either provide mixtures of E and Z isomers or furnish the thermodynamically preferred E isomer. Herein we report a mild and general method to achieve Z isomers of aryl oximes by photoisomerization of oximes via visible-light-mediated energy transfer (EnT) catalysis. Facile access to (Z)-oximes provides opportunities to achieve regio- and chemoselectivity complementary to those of widely used transformations employing oxime starting materials. We show an enhanced one-pot protocol for photocatalyzed oxime isomerization and subsequent Beckmann rearrangement that enables novel reactivity with alkyl groups migrating preferentially over aryl groups, reversing the regioselectivity of the traditional Beckmann reaction. Chemodivergent N- or O- cyclizations of alkenyl oximes are also demonstrated, leading to nitrones or cyclic oxime ethers, respectively.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 1956-46-3