Welcome to LookChem.com Sign In|Join Free

CAS

  • or

22374-89-6

Post Buying Request

22374-89-6 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

22374-89-6 Usage

Chemical Properties

clear colorless liquid

Uses

2-Amino-4-phenylbutane is used in the synthesis of N-substituted derivatives of (1-methyl-3- phenylpropyl)amine.

Biological Functions

Amphetamine is an indirectly acting adrenomimetic amine that depends for its action on the release of norepinephrine from noradrenergic nerves. Its pharmacological effects are similar to those of ephedrine; however, its CNS stimulant activity is somewhat greater. Both systolic and diastolic blood pressures are increased by oral dosing with amphetamine. The heart rate is frequently slowed reflexively. Cardiac output may remain unchanged in the low- and moderate-dose range. The therapeutic uses of amphetamine are based on its ability to stimulate the CNS. The D-isomer (dextroamphetamine) is three to four times as potent as the L-isomer in producing CNS effects. It has been used in the treatment of obesity because of its anorexic effect, although tolerance to this effect develops rapidly. It prevents or overcomes fatigue and has been used as a CNS stimulant. Amphetamine is no longer recommended for these uses because of its potential for abuse. Amphetamine is useful in certain cases of narcolepsy or minimal brain dysfunction.

Flammability and Explosibility

Notclassified

Safety Profile

A poison by intraperitoneal and parenteral route. Moderately toxic by ingestion.When heated to decomposition it emits toxic vapors of NOx.

Check Digit Verification of cas no

The CAS Registry Mumber 22374-89-6 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 2,2,3,7 and 4 respectively; the second part has 2 digits, 8 and 9 respectively.
Calculate Digit Verification of CAS Registry Number 22374-89:
(7*2)+(6*2)+(5*3)+(4*7)+(3*4)+(2*8)+(1*9)=106
106 % 10 = 6
So 22374-89-6 is a valid CAS Registry Number.
InChI:InChI=1/C10H15N/c1-9(11)7-8-10-5-3-2-4-6-10/h2-6,9H,7-8,11H2,1H3/p+1/t9-/m0/s1

22374-89-6 Well-known Company Product Price

  • Brand
  • (Code)Product description
  • CAS number
  • Packaging
  • Price
  • Detail
  • Alfa Aesar

  • (A18804)  3-Amino-1-phenylbutane, 98%   

  • 22374-89-6

  • 25g

  • 671.0CNY

  • Detail
  • Alfa Aesar

  • (A18804)  3-Amino-1-phenylbutane, 98%   

  • 22374-89-6

  • 100g

  • 2007.0CNY

  • Detail
  • Alfa Aesar

  • (A18804)  3-Amino-1-phenylbutane, 98%   

  • 22374-89-6

  • 500g

  • 7964.0CNY

  • Detail

22374-89-6SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 19, 2017

Revision Date: Aug 19, 2017

1.Identification

1.1 GHS Product identifier

Product name 4-phenylbutan-2-amine

1.2 Other means of identification

Product number -
Other names (RS)-1-methyl-3-phenylpropylamine

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:22374-89-6 SDS

22374-89-6Relevant articles and documents

Air Stable Iridium Catalysts for Direct Reductive Amination of Ketones

Polishchuk, Iuliia,Sklyaruk, Jan,Lebedev, Yury,Rueping, Magnus

supporting information, p. 5919 - 5922 (2021/03/08)

Half-sandwich iridium complexes bearing bidentate urea-phosphorus ligands were found to catalyze the direct reductive amination of aromatic and aliphatic ketones under mild conditions at 0.5 mol % loading with high selectivity towards primary amines. One of the complexes was found to be active in both the Leuckart–Wallach (NH4CO2H) type reaction as well as in the hydrogenative (H2/NH4AcO) reductive amination. The protocol with ammonium formate does not require an inert atmosphere, dry solvents, as well as additives and in contrast to previous reports takes place in hexafluoroisopropanol (HFIP) instead of methanol. Applying NH4CO2D or D2 resulted in a high degree of deuterium incorporation into the primary amine α-position.

Synthesis of α-Deuterated Primary Amines via Reductive Deuteration of Oximes Using D2O as a Deuterium Source

Ning, Lei,Li, Hengzhao,Lai, Zemin,Szostak, Michal,Chen, Xingyue,Dong, Yanhong,Jin, Shuhui,An, Jie

, p. 2907 - 2916 (2021/02/27)

Selective introduction of the deuterium atom into the α-position of amines is important for the development of all types of novel deuterated drugs and agrochemicals due to the pervasive presence of amines. In this study, we report the first general single-electron-transfer reductive deuteration of both ketoximes and aldoximes using SmI2 as an electron donor and D2O as a deuterium source for the synthesis of α-deuterated primary amines with excellent levels of deuterium incorporations (>95% [D]). This protocol exhibits excellent chemoselectivity and tolerates a variety of functional groups. The potential application of this new method was showcased in the synthesis of deuterated drugs, such as rimantadine-d4, the tebufenpyrad analogue, derivatives of nabumetone and pregnenolone, and a series of building blocks for the rapid and general assembly of deuterated drugs and pesticides.

Ambient-Temperature Synthesis of Primary Amines via Reductive Amination of Carbonyl Compounds

Xie, Chao,Song, Jinliang,Hua, Manli,Hu, Yue,Huang, Xin,Wu, Haoran,Yang, Guanying,Han, Buxing

, p. 7763 - 7772 (2020/08/21)

Efficient synthesis of primary amines via low-temperature reductive amination of carbonyl compounds using NH3 and H2 as the nitrogen and hydrogen resources is highly desired and challenging in the chemistry community. Herein, we employed naturally occurring phytic acid as a renewable precursor to fabricate titanium phosphate (TiP)-supported Ru nanocatalysts with different reduction degrees of RuO2 (Ru/TiP-x, x represents the reduction temperature) by combining ball milling and molten-salt processes. Very interestingly, the obtained Ru/TiP-100 had good catalytic performance for the reductive amination of carbonyl compounds at ambient temperature, resulting from the synergistic cooperation of the support (TiP) and the Ru/RuO2 with a suitable proportion of Ru0 (52%). Various carbonyl compounds could be efficiently converted into the corresponding primary amines with high yields. More importantly, the conversion of other substrates with reducible groups could also be achieved at ambient temperature. Detailed investigations indicated that the partially reduced Ru and the support (TiP) were indispensable. The high activity and selectivity of Ru/TiP-100 catalyst originates from the relatively high acidity and the suitable electron density of metallic Ru0.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 22374-89-6