Welcome to LookChem.com Sign In|Join Free

CAS

  • or

27948-61-4

Post Buying Request

27948-61-4 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

27948-61-4 Usage

Chemical Properties

clear light yellow to yellow liquid

Uses

(R)-1-(Furan-2-yl)ethanol is a useful reactant in organic synthesis.

Check Digit Verification of cas no

The CAS Registry Mumber 27948-61-4 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 2,7,9,4 and 8 respectively; the second part has 2 digits, 6 and 1 respectively.
Calculate Digit Verification of CAS Registry Number 27948-61:
(7*2)+(6*7)+(5*9)+(4*4)+(3*8)+(2*6)+(1*1)=154
154 % 10 = 4
So 27948-61-4 is a valid CAS Registry Number.

27948-61-4SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 17, 2017

Revision Date: Aug 17, 2017

1.Identification

1.1 GHS Product identifier

Product name (1R)-1-(furan-2-yl)ethanol

1.2 Other means of identification

Product number -
Other names -

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:27948-61-4 SDS

27948-61-4Downstream Products

27948-61-4Relevant articles and documents

A common synthetic route to homochiral tetracycles related to pillaromycinone and premithramycinone

Hill, Bryan,Jordan, Robert,Qu, Yang,Assoud, Abdeljalil,Rodrigo, Russell

, p. 1457 - 1468 (2011)

Homochiral AB segments for (+)-and (-)-pillaromycinone were prepared in 11 steps from 2-acetylfuran. The synthesis featured an intramolecular Diels-Alder reaction of a 2,5-disubstituted furan and a hydroxyl-directed homogeneous hydrogenation of the tetrasubstituted alkene double bond of two enones. The CD segment was attached by a modified Staunton-Weinreb annulation to produce the desired homochiral tetracycle 21c related to (+)-pillaromycinone. An unusual acetonide migration enabled the synthesis of a tetracyclic model for premithramycinone.

Cinchona-Alkaloid-Derived NNP Ligand for Iridium-Catalyzed Asymmetric Hydrogenation of Ketones

Zhang, Lin,Zhang, Ling,Chen, Qian,Li, Linlin,Jiang, Jian,Sun, Hao,Zhao, Chong,Yang, Yuanyong,Li, Chun

supporting information, p. 415 - 419 (2022/01/12)

Most ligands applied for asymmetric hydrogenation are synthesized via multistep reactions with expensive chemical reagents. Herein, a series of novel and easily accessed cinchona-alkaloid-based NNP ligands have been developed in two steps. By combining [Ir(COD)Cl]2, 39 ketones including aromatic, heteroaryl, and alkyl ketones have been hydrogenated, all affording valuable chiral alcohols with 96.0-99.9% ee. A plausible reaction mechanism was discussed by NMR, HRMS, and DFT, and an activating model involving trihydride was verified.

Practical access to (S)-heterocyclic aromatic acetates via CAL-B/Na2CO3-deacylation and Mitsunobu reaction protocol

Aribi-Zouioueche, Louisa,Bra?a, Nabila,Merabet-Khelassi, Mounia,Toffano, Martial

, (2022/02/11)

Herein, we report the preparation of enantiomerically pure forms of 2,3-dihydrobenzofuran-3-ol (1), chroman-4-ol (2), thiochroman-4-ol (3), 1-(furan-2-yl) ethanol (5) and 1-(thiophen-2-yl) ethanol (6), through a kinetic resolution catalysed by Candida antarctica lipase B/Na2CO3 hydrolysis sequence in organic media. The (R)-furnished alcohols and the (S)-remained acetates are recovered enantiopures (ee?>99%, E???200, Conv = 50%). Those ideal enzymatic kinetic resolution (EKRs) are well incorporated to the Mitsunobu inversion protocol in a one pot procedure to give (S)-heterocyclic acetates (1a–3a) in good to high enantiomeric excess (88%–92% ee). Whilst, the (S)-heteroaromatic acetates (5a and 6a) are given with moderate enantiomeric excess (51%–62% ee). All the (S)-acetates are given in good isolated chemical yields (>80%) allowing to overcome the maximum of 50% yield which could be usually reached in a regular kinetic resolution processes.

Asymmetric reduction of aromatic heterocyclic ketones with bio-based catalyst Lactobacillus kefiri P2

Bayda?, Yasemin,Kalay, Erbay,?ahin, Engin

, p. 1147 - 1155 (2020/10/06)

Abstract: Chiral heterocyclic secondary alcohols have received much attention due to their widespread use in pharmaceutical intermediates. In this study, Lactobacillus kefiri P2 biocatalysts isolated from traditional dairy products, were used to catalyze the asymmetric reduction of prochiral ketones to chiral secondary alcohols. Secondary chiral carbinols were obtained by asymmetric bioreduction of different prochiral substrates with results up to > 99% enantiomeric excess (ee). (R)-1-(benzofuran-2-yl)ethanol 5a, which can be used in the synthesis of pharmaceuticals such as bufuralols potent nonselective β-blockers antagonists, Amiodarone (cardiac anti-arrhythmic), and Benziodarone (coronary vasodilator), was produced in gram-scale, high yield and enantiomerically pure form using L. kefiri P2 biocatalysts. The gram-scale production was carried out, and 9.70?g of (R)-5a in enantiomerically pure form was obtained in 96% yield. Also, production of (R)-5a in terms of yield and gram scale through catalytic asymmetric reduction using the biocatalyst was the highest report so far. This is a cost-effective, clean and eco-friendly process for the preparation of chiral secondary alcohols compared to chemical processes. From an environmental and economic perspective, this biocatalytic method has great application potential, making it a green and sustainable way of synthesis. Graphical Abstract: [Figure not available: see fulltext.]

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 27948-61-4