Welcome to LookChem.com Sign In|Join Free

CAS

  • or

31181-78-9

Post Buying Request

31181-78-9 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

31181-78-9 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 31181-78-9 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 3,1,1,8 and 1 respectively; the second part has 2 digits, 7 and 8 respectively.
Calculate Digit Verification of CAS Registry Number 31181-78:
(7*3)+(6*1)+(5*1)+(4*8)+(3*1)+(2*7)+(1*8)=89
89 % 10 = 9
So 31181-78-9 is a valid CAS Registry Number.
InChI:InChI=1/C10H11NO4/c1-7(12)14-6-9-3-4-10(5-11-9)15-8(2)13/h3-5H,6H2,1-2H3

31181-78-9SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 14, 2017

Revision Date: Aug 14, 2017

1.Identification

1.1 GHS Product identifier

Product name (5-acetyloxypyridin-2-yl)methyl acetate

1.2 Other means of identification

Product number -
Other names 2-acetoxymethyl-5-acetoxypyridine

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:31181-78-9 SDS

31181-78-9Relevant articles and documents

Electronic absorption and emission properties of bishydrazone [2?×?2] metallosupramolecular grid-type architectures

Holub, Jan,Santoro, Antonio,Lehn, Jean-Marie

supporting information, p. 223 - 231 (2019/06/07)

Several ditopic ligands containing two tridentate bishydrazone coordination subunits and their Zn(II) and Cd(II) [2 × 2] grid-type complexes were prepared and their photoluminescent properties studied. A special attention was devoted to the influence of the orientation of the hydrazone group N–N[dbnd]in the core of the ligands and their complexes. Its reversal from [pyridine[dbnd]N–N–pyrimidine] (L1) to [pyridine–N–N[dbnd]pyrimidine] (L2) has a strong impact on the observed absorption and emission behaviour of particular ligands (L1 and L2) as well as of their [2 × 2] grid assemblies. The further lateral functionalization of the ligands led to different emission quantum yields of the resulting grids, while their emission and absorption spectra varied very little. The simplest derivative L1 turned out to have the best performance with, for its Zn(II) complex, relatively high quantum yield 60%.

Does the solid-liquid crystal phase transition provoke the spin-state change in spin-crossover metallomesogens?

Seredyuk,Gaspar,Ksenofontov,Galyametdinov,Kusz,Guetlich

, p. 1431 - 1439 (2008/09/20)

Three types of interplay/synergy between spin-crossover (SCO) and liquid crystalline (LC) phase transitions can be predicted: (i) systems with coupled phase transitions, where the structural changes associated to the Cr?LC phase transition drives the spin-state transition, (ii) systems where both transifions coexist in the same temperature region but are not coupled, and (iii) systems with uncoupled phase transitions. Here we present a new family of Fe(II) metallomesogens based on the ligand tris[3-aza-4-((5-C n)(6-R)(2-pyridyl))but-3-enyl]amine, with Cn = hexyloxy, dodecyloxy, hexadecyloxy, octadecyloxy, eicosyloxy, R = hydrogen or methyl (Cn-trenH or Cn-trenMe), which affords examples of systems of types i, ii, and iii. Self-assembly of the ligands Cn-trenH and Cn-trenMe with Fe(A)2·xH2O salts have afforded a family of complexes with general formula [Fe(Cn-trenR)](A) 2· sH2O (s > 0), with A = ClO4 -, F-, Cl-, Br- and I-. Single-crystal X-ray diffraction measurements have been performed on two derivatives of this family, named as [Fe(C6-trenH)](ClO 4)2 (C6-1) and [Fe(C6-trenMe)] (ClO4)2 (C6-2), at 150 K for C6-1 and at 90 and 298 K for C6-2. At 150 K, C6-1 displays the triclinic space group P1, whereas at 90 and at 298 K C6-2 adopts the monoclinic P21/c space group. In both compounds the iron atoms adopt a pseudo-octahedral symmetry and are surrounded by six nitrogen atoms belonging to imino groups and pyridines of the ligands Cn-trenH and C n-trenMe. The average Fe(II)-N bonds (1.963(2) A) at 150 K denote that C6-1 is in the low-spin (LS) state. For C6-2 the average Fe(II)-N bonds (2.007(1) A) at 90 K are characteristic of the LS state, while at 298 K they are typical for the high-spin (HS) state (2.234(3) A). Compound C6-1 and [Fe-(C18-trenH)](ClO 4)2 (C18-1) adopts the LS state in the temperature region between 10 and 400 K, while compound C6-2 and [Fe(Cn-trenMe)](ClO4)2 (n = 12 (C 12-2), 18 (C18-2)) exhibit spin crossover behavior at T1/2 centered around 140 K. The thermal spin transition is accompanied by a pronounced change of color from dark red (LS) to orange (HS). The light-induced excited spin state trapping (LIESST) effect has been investigated in compounds C6-2, C12-2 and C 18-2. The T1/2LIESST is 56 K (C6-2), 48 K (C16-2), and 56 K (C18-2). On the basis of differential scanning calorimetry, optical polarizing microscopy, and X-ray diffraction findings for C18-1, C12-2, and C 18-2 at high temperature a smectic mesophase Sx has been identified with layered structures similar to C6-1 and C 6-2. The compounds [Fe(Cn-trenH)](Cl)2· sH2O (n = 16 (C16-3, s = 3.5, C16-4, s = 0.5, C16-5, s = 0), 18 (C18-3, s = 3.5, C18-4, s = 0.5, C18-5, s = 0), 20 (C20-3, s = 3.5, C20-4, s = 0.5, C20-5, s = 0)) and [Fe(C18-tren)](F) 2·sH2O (C18-6, s = 3.5, C 18-7, s= 0) show a very particular spin-state change, while [Fe(C18-tren)](Br)2·3H2O (C 18-8) together with [Fe(C18-tren)](I)2 (C 18-9) are in the LS state (10-400 K) and present mesomorphic behavior like that observed for the complexes C18-1, C12-2, and C18-2. In compounds Cn-3 50% of the Fe(II) ions undergo spin-state change at T1/2 = 375 K induced by releasing water, and in partially dehydrated compounds (s = 0.5) the Cr→SA phase transition occurs at 287 K (C16-4), 301 K (C18-4) and 330 K (C20-4). For the fully dehydrated materials Cn-5 50% of the Fe(II) ions are in the HS state and show paramagnetic behavior between 10 and 400 K. In the partially dehydrated Cn-4 the spin transition is induced by the change of the aggregate state of matter (solid?liquid crystal). For compound C18-6 the full dehydration to C18-7 provokes the spin-state change of nearly 50% of the Fe(II) ions. The compounds Cn-3 and C18-6 are dark purple in the LS state and become light purple-brown when 50% of the Fe(II) atoms are in the HS state.

2-Pyridinecarboxylic acids

-

, (2008/06/13)

5-Etherified 2-pyridinecarboxylic acids, e.g. those of the formula STR1 or functional derivatives thereof, are hypotensive agents.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 31181-78-9