Welcome to LookChem.com Sign In|Join Free

CAS

  • or

321-60-8

Post Buying Request

321-60-8 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

321-60-8 Usage

Chemical Properties

Off-white Crystalline powder

Uses

2-Fluorobiphenyl is used as pharmaceuticals, veterinary drugs and organic synthesis intermediates. 2-Fluorobiphenyl was used as an internal standard for analysis of environmental pollutants in sediments using pressurized liquid extraction and gas chromatography-mass spectrometry, as a sole carbon & energy source for P. pseudoalcaligenes.

General Description

Colorless crystals.

Air & Water Reactions

Insoluble in water.

Reactivity Profile

Simple aromatic halogenated organic compounds, such as 2-Fluorobiphenyl, are very unreactive. Reactivity generally decreases with increased degree of substitution of halogen for hydrogen atoms. Materials in this group may be incompatible with strong oxidizing and reducing agents. Also, they may be incompatible with many amines, nitrides, azo/diazo compounds, alkali metals, and epoxides.

Check Digit Verification of cas no

The CAS Registry Mumber 321-60-8 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 3,2 and 1 respectively; the second part has 2 digits, 6 and 0 respectively.
Calculate Digit Verification of CAS Registry Number 321-60:
(5*3)+(4*2)+(3*1)+(2*6)+(1*0)=38
38 % 10 = 8
So 321-60-8 is a valid CAS Registry Number.
InChI:InChI=1/C13H11BrFNO2S/c14-12-3-1-2-4-13(12)19(17,18)16-9-10-5-7-11(15)8-6-10/h1-8,16H,9H2

321-60-8 Well-known Company Product Price

  • Brand
  • (Code)Product description
  • CAS number
  • Packaging
  • Price
  • Detail
  • Alfa Aesar

  • (A12227)  2-Fluorobiphenyl, 98%   

  • 321-60-8

  • 5g

  • 443.0CNY

  • Detail
  • Alfa Aesar

  • (A12227)  2-Fluorobiphenyl, 98%   

  • 321-60-8

  • 10g

  • 841.0CNY

  • Detail
  • Alfa Aesar

  • (A12227)  2-Fluorobiphenyl, 98%   

  • 321-60-8

  • 25g

  • 1962.0CNY

  • Detail
  • Supelco

  • (47581-U)  2-Fluorobiphenylsolution  certified reference material, 10.000 μg/mL in dichloromethane

  • 321-60-8

  • 47581-U

  • 622.44CNY

  • Detail

321-60-8SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 18, 2017

Revision Date: Aug 18, 2017

1.Identification

1.1 GHS Product identifier

Product name 1-fluoro-2-phenylbenzene

1.2 Other means of identification

Product number -
Other names ortho-Fluorodiphenyl

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:321-60-8 SDS

321-60-8Relevant articles and documents

Abnormal-NHC Palladium(II) Complexes: Rational Synthesis, Structural Elucidation, and Catalytic Activity

Rottsch?fer, Dennis,Schürmann, Christian J.,Lamm, Jan-Hendrik,Paesch, Alexander N.,Neumann, Beate,Ghadwal, Rajendra S.

, p. 3421 - 3429 (2016)

Reaction of a C2-arylated imidazolium iodide (IPrPh)I (1) (IPrPh = 1,3-bis(2,6-diisopropylphenyl)-2-phenyl-imidazolium) with PdCl2 in the presence of Ag2O affords abnormal N-heterocyclic carbene (aNHC) palladium complexes (aIPrPh)PdCl2 (2) and (aIPrPh)2PdCl2 (3) (aIPrPh = 1,3-bis(2,6-diisopropylphenyl)-2-phenyl-imidazol-4-ylidene). Treatment of 2 with a pyridine gives Pd-PEPPSI-type complexes (aIPrPh)PdCl2(L) (L = pyridine (py), 5; L = 3-chloropyridine (3Cl-py), 6). Compounds 5 and 6 are also accessible by a one-pot reaction of 1, PdCl2, and Ag2O in a pyridine solvent. While the use of a conventional base K2CO3 leads to the formation of mixed halide complexes (aIPrPh)Pd(Cl)I(L) (7, L = py; 8, L = 3Cl-py), iodide derivatives (aIPrPh)PdI2(L) (9, L = py; 10, L = 3Cl-py) can be selectively prepared with addition of an excess of KI to the reaction mixture. Albeit in a low yield, a putative transmetalation agent {(aIPrPh)2Ag}AgI2 (4) has been isolated and characterized. Compounds 2-10 are air stable crystalline solids and have been characterized by elemental analysis, mass spectrometry, and NMR spectroscopic studies. Molecular structures of 2-10 have been established by single crystal X-ray diffraction analyses. Catalytic activity of three representative compounds 2, 5, and 6 has been tested for the Suzuki-Miyaura cross-coupling reactions.

PEPPSI-effect on suzuki-miyaura reactions using 4,5-dicyano-1,3-dimesitylimidazol-2-ylidene-palladium complexes: A comparison between trans-ligands

Baier, Heiko,Kelling, Alexandra,Holdt, Hans-Jürgen

, p. 1950 - 1957 (2015)

The PEPPSI (Pyridine Enhanced Precatalyst Preparation, Stabilization and Initiation) complexes 12-15 with the structure [PdCl2{(CN)2IMes}(3-R-py)] (12: R = H; 13: R = Cl; 14: R = Br; 15: R = CN) bearing the maleonitrile-based N-heterocyclic carbene (NHC) (CN)2IMes ({(CN)2IMes}: 4,5-dicyano-1,3-dimesitylimidazol-2-ylidene) were prepared. Solid state structures of 14 and 15 were obtained. Complexes 14 and 15 adopt a slightly distorted square-planar coordination geometry in the solid state with the substituted pyridine ligand trans to the NHC. Catalytic activities of precatalysts 12-15 were studied and subsequently compared to complexes [PdCl2{(CN)2IMes}(PPh3)] (4) and [PdCl(dmba){(CN)2IMes}] (5) recently reported by our group in the Suzuki-Miyaura reaction of various aryl halides and phenylboronic acid. Reactions using previously reported [PdCl2(IMes)(py)] (IMes: 1,3-dimesitylimidazol-2-ylidene) (1) were also carried out and their results contrasted to those involving 12-15, 4 and 5. Differences in initiation rates and the catalytically active species related to the seven complexes in regards to the "throw away ligand" were investigated. Poisoning experiments with mercury show that palladium nanoparticles are responsible for the catalytic activity.

Efficient and Economical Preparation of Hypercrosslinked Polymers-palladium Based on Schiff Base as Recyclable Catalyst for Suzuki-Miyaura Reactions

Gao, Xiyue,Lin, Hongwei,Liu, Shasha,Luo, Qionglin,Ouyang, Yuejun,Xiang, Bailin,Xiang, Dexuan,Yao, Huan,Zhang, Li

supporting information, p. 1879 - 1882 (2021/10/29)

A novel hypercrosslinked polymer (HCP) was prepared via Friedel-Crafts alkylation reaction of Schiff base with benzene and formaldehyde dimethyl acetal (FDA) promoted by FeCl3. The HCP was then metalated with Pd(II) to form heterogeneous catalyst. The protocol featured low cost, mild conditions, readily available materials, easy separation and high yield. Physicochemical methods, including IR, N2 sorption, ICP, TGA, XPS, SEM, EDX, and TEM, were used to characterize the catalyst structure and composition. The results reveal that the heterogeneous catalyst possesses high specific surface area, large pore volume, good chemical and thermal stability, and highly dispersed palladium. The heterogeneous catalysts were applied in Suzuki-Miyaura coupling reaction to evaluate their catalytic performance. The experiments reflected that the HCPs-Pd(OAc)2 was an efficient catalyst for Suzuki-Miyaura reactions with the yield of biaryl up to 99%, while the TON could reach 2250. The reusability test showed the catalyst was easily recovered and reused for at least six times without obvious decrease in activity.

Radical Decarboxylative Carbometalation of Benzoic Acids: A Solution to Aromatic Decarboxylative Fluorination

Xu, Peng,López-Rojas, Priscila,Ritter, Tobias

supporting information, p. 5349 - 5354 (2021/05/05)

Abundant aromatic carboxylic acids exist in great structural diversity from nature and synthesis. To date, the synthetically valuable decarboxylative functionalization of benzoic acids is realized mainly by transition-metal-catalyzed decarboxylative cross couplings. However, the high activation barrier for thermal decarboxylative carbometalation that often requires 140 °C reaction temperature limits both the substrate scope as well as the scope of suitable reactions that can sustain such conditions. Numerous reactions, for example, decarboxylative fluorination that is well developed for aliphatic carboxylic acids, are out of reach for the aromatic counterparts with current reaction chemistry. Here, we report a conceptually different approach through a low-barrier photoinduced ligand to metal charge transfer (LMCT)-enabled radical decarboxylative carbometalation strategy, which generates a putative high-valent arylcopper(III) complex, from which versatile facile reductive eliminations can occur. We demonstrate the suitability of our new approach to address previously unrealized general decarboxylative fluorination of benzoic acids.

Small organic molecules with tailored structures: Initiators in the transition-metal-free C-H arylation of unactivated arenes

Chen, Suqing,Chen, Wenjun,Chen, Yu,Liu, Zhenghui,Mu, Tiancheng,Wang, Peng,Yan, Zhenzhong

, p. 14500 - 14509 (2020/04/27)

Simple, small organic molecules containing nitrogen and oxygen atoms in their structures have been disclosed to catalyze transition-metal-free C-H arylation of unactivated arenes with aryl iodides in the presence of tBuOK. In this article, an optimized catalytically active molecule, (2-(methylamino)phenyl)methanol, was designed. A broad range of aryl iodides could be converted into the corresponding arylated products at 100 °C over 24 h with good to excellent yields. Mechanistic experiments verified that radicals participated in this catalytic transformation and that the cleavage of the aromatic C-H bond was not the rate determining step. A K+ capture experiment by 18-crown-6 emphasized the significance of the cation species of the strong base. Fourier transform infrared spectroscopy proved that the catalytic system was activated by the hydrogen bonds between small organic molecules and tBuOK. Also, a clear mechanism was proposed. This transition-metal-free method affords a promising system for efficient and inexpensive synthesis of biaryls via a user-friendly approach, as confirmed by scale-up experiments.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 321-60-8