Welcome to LookChem.com Sign In|Join Free

CAS

  • or

399-25-7

Post Buying Request

399-25-7 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

399-25-7 Usage

General Description

1-Fluoro-2-(2-nitrovinyl)benzene is a chemical compound with the molecular formula C8H6FNO2. It is a fluorinated aromatic compound that contains a nitro group and a vinyl group. 1-Fluoro-2-(2-nitrovinyl)benzene is used in organic synthesis and has potential applications in pharmaceuticals and agrochemicals. It is important to handle this compound with caution, as it is flammable and may have harmful effects if ingested or inhaled. Additionally, it may have environmental impacts and should be handled and disposed of properly according to regulations.

Check Digit Verification of cas no

The CAS Registry Mumber 399-25-7 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 3,9 and 9 respectively; the second part has 2 digits, 2 and 5 respectively.
Calculate Digit Verification of CAS Registry Number 399-25:
(5*3)+(4*9)+(3*9)+(2*2)+(1*5)=87
87 % 10 = 7
So 399-25-7 is a valid CAS Registry Number.

399-25-7 Well-known Company Product Price

  • Brand
  • (Code)Product description
  • CAS number
  • Packaging
  • Price
  • Detail
  • Sigma-Aldrich

  • (09598)  2-Fluoro-β-nitrostyrene  ≥98.0%

  • 399-25-7

  • 09598-5G

  • 618.93CNY

  • Detail

399-25-7SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 13, 2017

Revision Date: Aug 13, 2017

1.Identification

1.1 GHS Product identifier

Product name 1-fluoro-2-[(E)-2-nitroethenyl]benzene

1.2 Other means of identification

Product number -
Other names 1-fluoro-2-(2-nitrovinyl)benzene

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:399-25-7 SDS

399-25-7Relevant articles and documents

Application of Fluorine- And Nitrogen-Walk Approaches: Defining the Structural and Functional Diversity of 2-Phenylindole Class of Cannabinoid 1 Receptor Positive Allosteric Modulators

Garai, Sumanta,Kulkarni, Pushkar M.,Schaffer, Peter C.,Leo, Luciana M.,Brandt, Asher L.,Zagzoog, Ayat,Black, Tallan,Lin, Xiaoyan,Hurst, Dow P.,Janero, David R.,Abood, Mary E.,Zimmowitch, Anaelle,Straiker, Alex,Pertwee, Roger G.,Kelly, Melanie,Szczesniak, Anna-Maria,Denovan-Wright, Eileen M.,Mackie, Ken,Hohmann, Andrea G.,Reggio, Patricia H.,Laprairie, Robert B.,Thakur, Ganesh A.

, p. 542 - 568 (2020/02/04)

Cannabinoid 1 receptor (CB1R) allosteric ligands hold a far-reaching therapeutic promise. We report the application of fluoro- and nitrogen-walk approaches to enhance the drug-like properties of GAT211, a prototype CB1R allosteric agonist-positive allosteric modulator (ago-PAM). Several analogs exhibited improved functional potency (cAMP, β-arrestin 2), metabolic stability, and aqueous solubility. Two key analogs, GAT591 (6r) and GAT593 (6s), exhibited augmented allosteric-agonist and PAM activities in neuronal cultures, improved metabolic stability, and enhanced orthosteric agonist binding (CP55,940). Both analogs also exhibited good analgesic potency in the CFA inflammatory-pain model with longer duration of action over GAT211 while being devoid of adverse cannabimimetic effects. Another analog, GAT592 (9j), exhibited moderate ago-PAM potency and improved aqueous solubility with therapeutic reduction of intraocular pressure in murine glaucoma models. The SAR findings and the enhanced allosteric activity in this class of allosteric modulators were accounted for in our recently developed computational model for CB1R allosteric activation and positive allosteric modulation.

Substrate promiscuity of ortho-naphthoquinone catalyst: Catalytic aerobic amine oxidation protocols to deaminative cross-coupling and n-nitrosation

Kim, Hun Young,Oh, Kyungsoo,Si, Tengda

, p. 9216 - 9221 (2019/10/08)

ortho-Naphthoquinone-based organocatalysts have been identified as versatile aerobic oxidation catalysts. Primary amines were readily cross-coupled with primary nitroalkanes via deaminative pathway to give nitroalkene derivatives in good to excellent yields. Secondary and tertiary amines were inert to ortho-naphthoquinone catalysts; however, secondary nitroalkanes were readily converted by ortho-naphthoquinone catalysts to the corresponding nitrite species that in situ oxidized the amines to the corresponding N-nitroso compounds. Without using harsh oxidants in a stoichiometric amount, the present catalytic aerobic oxidation protocol utilizes the substrate promiscuity feature to provide a facile access to amine oxidation products under mild reaction conditions.

Cooperative Multifunctional Catalysts for Nitrone Synthesis: Platinum Nanoclusters in Amine-Functionalized Metal–Organic Frameworks

Li, Xinle,Zhang, Biying,Tang, Linlin,Goh, Tian Wei,Qi, Shuyan,Volkov, Alexander,Pei, Yuchen,Qi, Zhiyuan,Tsung, Chia-Kuang,Stanley, Levi,Huang, Wenyu

supporting information, p. 16371 - 16375 (2017/11/28)

Nitrones are key intermediates in organic synthesis and the pharmaceutical industry. The heterogeneous synthesis of nitrones with multifunctional catalysts is extremely attractive but rarely explored. Herein, we report ultrasmall platinum nanoclusters (PtNCs) encapsulated in amine-functionalized Zr metal–organic framework (MOF), UiO-66-NH2 (Pt@UiO-66-NH2) as a multifunctional catalyst in the one-pot tandem synthesis of nitrones. By virtue of the cooperative interplay among the selective hydrogenation activity provided by the ultrasmall PtNCs and Lewis acidity/basicity/nanoconfinement endowed by UiO-66-NH2, Pt@UiO-66-NH2 exhibits remarkable activity and selectivity, in comparison to Pt/carbon, Pt@UiO-66, and Pd@UiO-66-NH2. Pt@UiO-66-NH2 also outperforms Pt nanoparticles supported on the external surface of the same MOF (Pt/UiO-66-NH2). To our knowledge, this work demonstrates the first examples of one-pot synthesis of nitrones using recyclable multifunctional heterogeneous catalysts.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 399-25-7