Welcome to LookChem.com Sign In|Join Free

CAS

  • or

4075-14-3

Post Buying Request

4075-14-3 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

4075-14-3 Usage

Chemical Properties

White Solid

Uses

Different sources of media describe the Uses of 4075-14-3 differently. You can refer to the following data:
1. A metabolite of Testosterone (T155000) in human. Controlled substance.
2. A metabolite of Testosterone (T) (T155000) in human. Controlled substance.

Check Digit Verification of cas no

The CAS Registry Mumber 4075-14-3 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 4,0,7 and 5 respectively; the second part has 2 digits, 1 and 4 respectively.
Calculate Digit Verification of CAS Registry Number 4075-14:
(6*4)+(5*0)+(4*7)+(3*5)+(2*1)+(1*4)=73
73 % 10 = 3
So 4075-14-3 is a valid CAS Registry Number.
InChI:InChI=1/C19H28O3/c1-18-8-7-14-12(13(18)5-6-17(18)22)4-3-11-9-15(20)16(21)10-19(11,14)2/h9,12-14,16-17,21-22H,3-8,10H2,1-2H3/t12-,13-,14-,16+,17-,18-,19-/m0/s1

4075-14-3SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 11, 2017

Revision Date: Aug 11, 2017

1.Identification

1.1 GHS Product identifier

Product name 2α-Hydroxy Testosterone

1.2 Other means of identification

Product number -
Other names (2R,8R,9S,10R,13S,14S,17S)-2,17-dihydroxy-10,13-dimethyl-1,2,6,7,8,9,11,12,14,15,16,17-dodecahydrocyclopenta[a]phenanthren-3-one

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:4075-14-3 SDS

4075-14-3Downstream Products

4075-14-3Relevant articles and documents

Characterization of two steroid hydroxylases from different Streptomyces spp. and their ligand-bound and -unbound crystal structures

Dangi, Bikash,Lee, Chang Woo,Kim, Ki-Hwa,Park, Sun-Ha,Yu, Eun-Ji,Jeong, Chang-Sook,Park, Hyun,Lee, Jun Hyuck,Oh, Tae-Jin

, p. 1683 - 1699 (2019)

Bacterial cytochrome P450 (CYP) enzymes are involved in the hydroxylation of various endogenous substrates while using a heme molecule as a cofactor. CYPs have gained biotechnological interest as useful biocatalysts capable of altering chemical structures by adding a hydroxyl group in a regiospecific manner. Here, we identified, purified, and characterized two CYP154C4 proteins from Streptomyces sp. W2061 (StCYP154C4-1) and Streptomyces sp. ATCC 11861 (StCYP154C4-2). Activity assays showed that both StCYP154C4-1 and StCYP154C4-2 can produce 2′-hydroxylated testosterone, which differs from the activity of a previously described NfCYP154C5 from Nocardia farcinica in terms of its 16α-hydroxylation of testosterone. To better understand the molecular basis of the regioselectivity of these two CYP154C4 proteins, crystal structures of the ligand-unbound form of StCYP154C4-1 and the testosterone-bound form of StCYP154C4-2 were determined. Comparison with the previously determined NfCYP154C5 structure revealed differences in the substrate-binding residues, suggesting a likely explanation for the different patterns of testosterone hydroxylation, despite the high sequence similarities between the enzymes (54% identity). These findings provide valuable insights that will enable protein engineering for the development of artificial steroid-related CYPs exhibiting different regiospecificity.

-

Rao,Burdett

, p. 377 (1971)

-

Drug Oxidation by Cytochrome P450BM3: Metabolite Synthesis and Discovering New P450 Reaction Types

Ren, Xinkun,Yorke, Jake A.,Taylor, Emily,Zhang, Ting,Zhou, Weihong,Wong, Luet Lok

, p. 15039 - 15047 (2015/10/20)

There is intense interest in late-stage catalytic C-H bond functionalization as an integral part of synthesis. Effective catalysts must have a broad substrate range and tolerate diverse functional groups. Drug molecules provide a good test of these attributes of a catalyst. A library of P450BM3 mutants developed from four base mutants with high activity for hydrocarbon oxidation produced human metabolites of a panel of drugs that included neutral (chlorzoxazone, testosterone), cationic (amitriptyline, lidocaine) and anionic (diclofenac, naproxen) compounds. No single mutant was active for all the tested drugs but multiple variants in the library showed high activity with each compound. The high conversions enabled full product characterization that led to the discovery of the new P450 reaction type of oxidative decarboxylation of an α-hydroxy carboxylic acid and the formation a protected imine from an amine, offering a novel route to α-functionalization of amines. The substrate range and varied product profiles suggest that this library of enzymes is a good basis for developing late-stage C-H activation catalysts.

Double site saturation mutagenesis of the human cytochrome P450 2D6 results in regioselective steroid hydroxylation

Geier, Martina,Braun, Andreas,Fladischer, Patrik,Stepniak, Piotr,Rudroff, Florian,Hametner, Christian,Mihovilovic, Marko D.,Glieder, Anton

, p. 3094 - 3108 (2013/07/26)

The human cytochrome P450 2D6 (CYP2D6) is one of the major human drug metabolizing enzymes and acts preferably on substrates containing a basic nitrogen atom. Testosterone - just as other steroids - is an atypical substrate and only poorly metabolized by CYP2D6. The present study intended to investigate the influence of the two active site residues 216 and 483 on the capability of CYP2D6 to hydroxylate steroids such as for example testosterone. All 400 possible combinatorial mutations at these two positions have been generated and expressed individually in Pichia pastoris. Employing whole-cell biotransformations coupled with HPLC-MS analysis the testosterone hydroxylase activity and regioselectivity of every single CYP2D6 variant was determined. Covering the whole sequence space, CYP2D6 variants with improved activity and so far unknown regio-preference in testosterone hydroxylation were identified. Most intriguingly and in contrast to previous literature reports about mutein F483I, the mutation F483G led to preferred hydroxylation at the 2β-position, while the slow formation of 6β-hydroxytestosterone, the main product of wild-type CYP2D6, was further reduced. Two point mutations have already been sufficient to convert CYP2D6 into a steroid hydroxylase with the highest ever reported testosterone hydroxylation rate for this enzyme, which is of the same order of magnitude as for the conversion of the standard substrate bufuralol by wild-type CYP2D6. Furthermore, this study is also an example for efficient human CYP engineering in P. pastoris for biocatalytic applications and to study so far unknown pharmacokinetic effects of individual and combined mutations in these key enzymes of the human drug metabolism. 400 cytochrome P450 2D6 (CYP2D6) variants representing all possible amino acid exchanges at two important enzyme's residues were expressed and individually analyzed to investigate their influence on regioselective steroid hydroxylation. Steroids represent a substrate class atypical for wildtype CYP2D6. Employing this strategy CYP2D6 variants with improved activity and variants with altered region-preference were identified and characterized.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 4075-14-3