Welcome to LookChem.com Sign In|Join Free

CAS

  • or

4199-09-1

Post Buying Request

4199-09-1 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

4199-09-1 Usage

General Description

The chemical (S)-1-(isopropylamino)-3-(naphthyloxy)propan-2-ol is a compound that belongs to the class of beta-blockers, which are used to treat high blood pressure and heart conditions. It is a selective beta-adrenergic receptor antagonist, meaning it blocks the effects of adrenaline on the heart and blood vessels. (S)-1-(isopropylamino)-3-(naphthyloxy)propan-2-ol has a specific arrangement of atoms that allows it to interact with beta-adrenergic receptors in the body, leading to a decrease in heart rate and blood pressure. It is commonly used in the treatment of conditions such as hypertension, angina, and arrhythmias.

Check Digit Verification of cas no

The CAS Registry Mumber 4199-09-1 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 4,1,9 and 9 respectively; the second part has 2 digits, 0 and 9 respectively.
Calculate Digit Verification of CAS Registry Number 4199-09:
(6*4)+(5*1)+(4*9)+(3*9)+(2*0)+(1*9)=101
101 % 10 = 1
So 4199-09-1 is a valid CAS Registry Number.
InChI:InChI=1/C16H21NO2/c1-12(2)17-10-14(18)11-19-16-9-5-7-13-6-3-4-8-15(13)16/h3-9,12,14,17-18H,10-11H2,1-2H3/t14-/m0/s1

4199-09-1SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 14, 2017

Revision Date: Aug 14, 2017

1.Identification

1.1 GHS Product identifier

Product name (2S)-1-(Isopropylamino)-3-(1-naphthyloxy)-2-propanol

1.2 Other means of identification

Product number -
Other names NH-Pro-Phe-COOMe

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:4199-09-1 SDS

4199-09-1Relevant articles and documents

Engineering of an epoxide hydrolase for efficient bioresolution of bulky pharmaco substrates

Kong, Xu-Dong,Yuan, Shuguang,Li, Lin,Chen, She,Xu, Jian-He,Zhou, Jiahai

, p. 15717 - 15722 (2014)

Optically pure epoxides are essential chiral precursors for the production of (S)-propranolol, (S)-alprenolol, and other β-adrenergic receptor blocking drugs. Although the enzymatic production of these bulky epoxides has proven difficult, here we report a method to effectively improve the activity of BmEH, an epoxide hydrolase from Bacillus megaterium ECU1001 toward α-naphthyl glycidyl ether, the precursor of (S)-propranolol, by eliminating the steric hindrance near the potential product-release site. Using X-ray crystallography, mass spectrum, and molecular dynamics calculations, we have identified an active tunnel for substrate access and product release of this enzyme. The crystal structures revealed that there is an independent product-release site in BmEH that was not included in other reported epoxide hydrolase structures. By alanine scanning, two mutants, F128A and M145A, targeted to expand the potential product-release site displayed 42 and 25 times higher activities toward α-naphthyl glycidyl ether than the wild-type enzyme, respectively. These results show great promise for structure-based rational design in improving the catalytic efficiency of industrial enzymes for bulky substrates. epoxide hydrolase X-ray crystallography protein engineering product release bulky substrate We are grateful for access to beamline BL17U1 at Shanghai Synchrotron Radiation Facility and thank the beamline staff for technical support. We also thank Dr. Peter K. Park and Profs. Zhihong Guo and Ran Hong for helpful discussions. This work was supported by National Program on Key Basic Research of China Grant 2011CB710800 (to J.-H.X. and J.Z.), National Grand Project for Medicine Innovation Grant 2012ZX10002006 (to J.Z.), National Natural Science Foundation of China Grant 21276082 (to J.-H.X.), and a grant from the Open Fund from the State Key Laboratory of Bioreactor Engineering (to J.Z.).

Kinetic resolution of propranolol by a lipase-catalyzed N-acetylation

Chiou, Tzyy-Wen,Chang, Cheng-Chi,Lai, Chung-Torr,Tai, Dar-Fu

, p. 433 - 436 (1997)

An enzymatic method for the direct resolution of propranolol is described. Candida cylindracea lipase enantioselectively catalyzed N-acetylation of S-propranolol with isopropenyl acetate in isopropyl ether. The ee values of the two enantiomers of N-acetylpropranolol were determined by an HPLC equipped with a chiral column. The effects of organic solvent nature and substrate concentration on enantioselectivity were also studied.

Preparation of a novel hydroxypropyl-γ-cyclodextrin functionalized monolith for separation of chiral drugs in capillary electrochromatography

Deng, Miaoduo,Xue, Mengyao,Liu, Yanru,Zhao, Min

, p. 188 - 195 (2021/02/26)

In this study, a novel hydroxypropyl-γ-cyclodextrin (HP-γ-CD) functionalized monolithic capillary column was prepared by one-pot sequential strategy and used for chiral separation in capillary electrochromatography for the first time. In one pot, GMA-HP-γ-CD as functional monomer was allowed to be formed via the ring opening reaction between HP-γ-CD and glycidyl methacrylate (GMA) catalyzed by 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) and then copolymerized directly with ethylene dimethacrylate (EDMA) and 2-acrylamido-2-methyl propane sulfonic acid (AMPS) in the presence of porogenic solvents via thermally initiated free radical polymerization. The preparation conditions of monoliths were optimized. Enantiomer separations of six chiral drugs including pindolol, clorprenaline, tulobuterol, clenbuterol, propranolol, and tropicamide were achieved on the monolith. Among them, pindolol, clorprenaline, and tropicamide were baseline separated with resolution values of 1.62, 1.73, and 1.55, respectively. The mechanism of enantiomer separation was discussed by comparison of the HP-γ-CD and HP-β-CD functionalized monoliths.

Enantioseparation of mandelic acid on vancomycin column: Experimental and docking study

Shahnani, Mostafa,Sefidbakht, Yahya,Maghari, Shokoofeh,Mehdi, Ahmad,Rezadoost, Hassan,Ghassempour, Alireza

supporting information, p. 1289 - 1298 (2020/08/19)

So far, no detailed view has been expressed regarding the interactions between vancomycin and racemic compounds including mandelic acid. In the current study, a chiral stationary phase was prepared by using 3-aminopropyltriethoxysilane and succinic anhydride to graft carboxylated silica microspheres and subsequently by activating the carboxylic acid group for vancomycin immobilization. Characterization by elemental analysis, Fourier transform infrared spectroscopy, solid-state nuclear magnetic resonance, and thermogravimetric analysis demonstrated effective functionalization of the silica surface. R and S enantiomers of mandelic acid were separated by the synthetic vancomycin column. Finally, the interaction between vancomycin and R/S mandelic acid enantiomers was simulated by Auto-dock Vina. The binding energies of interactions between R and S enantiomers and vancomycin chiral stationary phase were different. In the most probable interaction, the difference in mandelic acid binding energy was approximately 0.2 kcal/mol. In addition, circular dichroism spectra of vancomycin interacting with R and S enantiomers showed different patterns. Therefore, R and S mandelic acid enantiomers may occupy various binding pockets and interact with different vancomycin functions. These observations emphasized the different retention of R and S mandelic acid enantiomers in vancomycin chiral column.

Enantioseparation of chiral pharmaceuticals by vancomycin-bonded stationary phase and analysis of chiral recognition mechanism

Li, Jiaxi,Liu, Ruixia,Wang, Liyang,Liu, Xiaoling,Gao, Hongjie

, p. 236 - 247 (2019/02/01)

The drug chirality is attracting increasing attention because of different biological activities, metabolic pathways, and toxicities of chiral enantiomers. The chiral separation has been a great challenge. Optimized high-performance liquid chromatography (HPLC) methods based on vancomycin chiral stationary phase (CSP) were developed for the enantioseparation of propranolol, atenolol, metoprolol, venlafaxine, fluoxetine, and amlodipine. The retention and enantioseparation properties of these analytes were investigated in the variety of mobile phase additives, flow rate, and column temperature. As a result, the optimal chromatographic condition was achieved using methanol as a main mobile phase with triethylamine (TEA) and glacial acetic acid (HOAc) added as modifiers in a volume ratio of 0.01% at a flow rate of 0.3?mL/minute and at a column temperature of 5°C. The thermodynamic parameters (eg, ΔH, ΔΔH, and ΔΔS) from linear van 't Hoff plots revealed that the retention of investigated pharmaceuticals on vancomycin CSP was an exothermic process. The nonlinear behavior of lnk′ against 1/T for propranolol, atenolol, and metoprolol suggested the presence of multiple binding mechanisms for these analytes on CSP with variation of temperature. The simulated interaction processes between vancomycin and pharmaceutical enantiomers using molecular docking technique and binding energy calculations indicated that the calculated magnitudes of steady combination energy (ΔG) coincided with experimental elution order for most of these enantiomers.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 4199-09-1