Welcome to LookChem.com Sign In|Join Free

CAS

  • or

491-97-4

Post Buying Request

491-97-4 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier
  • [3-hydroxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methylphosphono hydrogen phosphate

    Cas No: 491-97-4

  • No Data

  • No Data

  • No Data

  • BOC Sciences
  • Contact Supplier

491-97-4 Usage

Definition

ChEBI: A thymidine phosphate having a diphosphate group at the 5'-position.

Check Digit Verification of cas no

The CAS Registry Mumber 491-97-4 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 4,9 and 1 respectively; the second part has 2 digits, 9 and 7 respectively.
Calculate Digit Verification of CAS Registry Number 491-97:
(5*4)+(4*9)+(3*1)+(2*9)+(1*7)=84
84 % 10 = 4
So 491-97-4 is a valid CAS Registry Number.
InChI:InChI=1/C10H16N2O11P2/c1-5-3-12(10(15)11-9(5)14)8-2-6(13)7(22-8)4-21-25(19,20)23-24(16,17)18/h3,6-8,13H,2,4H2,1H3,(H,19,20)(H,11,14,15)(H2,16,17,18)

491-97-4SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 17, 2017

Revision Date: Aug 17, 2017

1.Identification

1.1 GHS Product identifier

Product name dTDP

1.2 Other means of identification

Product number -
Other names -

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:491-97-4 SDS

491-97-4Relevant articles and documents

An enzyme module system for in situ regeneration of deoxythymidine 5′-diphosphate (dTDP)-activated deoxy sugars

Rupprath, Carsten,Kopp, Maren,Hirtz, Dennis,Mueller, Rolf,Elling, Lothar

, p. 1489 - 1496 (2008/09/18)

A highly flexible enzyme module system (EMS) was developed which allows for the first time the in situ regeneration of deoxythymidine 5′-diphosphate (dTDP)-activated deoxy sugars and furthermore enables us to produce novel sorangiosides in a combinatorial biocatalytic approach using three enzyme modules. The SuSy module with the recombinant plant enzyme sucrose synthase (SuSy) and the deoxy sugar module consisting of the enzymes RmlB (4,6-dehydratase), RmlC (3,5-epimerase) and RmlD (4-ketoreductase) from the biosynthetic pathway of dTDP-β-L-rhamnose were combined with the glycosyltransferase module containing the promiscuous recombinant glycosyltransferase SorF from Sorangium cellulosum So cel2. Kinetic data and the catalytic efficiency were determined for the donor substrates of SorF: dTDP-α-D-glucose, dTDP-β-L-rhamnose, uridine diphosphate (UDP)-α-D-glucose (Glc), and dTDP-6-deoxy-4-keto-α-D-glucose. The synthesis of glucosyl-sorangioside with in situ regeneration of dTDP-Glc was accomplished by combination of SuSy and SorF. The potential of the EMS is demonstrated by combining SuSy, RmlB, RmlC, RmlD with SorF in one-pot for the in situ regeneration of dTDP-activated (deoxy) sugars. The HPLC/MS analysis revealed the formation of rhamnosyl-sorangioside and glucosyl-sorangioside, demonstrating the in situ regeneration of dTDP-β-L-rhamnose and dTDP-a-D-glucose and a cycle number for dTDP higher than 9. Furthermore, NADH (reduced form of nicotinamdie adenine dinucleotide) regeneration with formate dehydrogenase in the reduction step catalyzed by the 4-ketoreductase RmlD could be integrated in the one-pot synthesis yielding similar conversion rates and cycle numbers. In summary, we have established the first in situ regeneration cycle for dTDP-activated (deoxy) sugars by a highly flexible EMS which allows simple exchange of enzymes in the deoxy sugar module and exchange of glycosyltransferases as well as aglycones in the glycosyltransferase module to synthesize new hybrid glycosylated natural products in one-pot.

Mutation of Gln125 to Asn selectively abolishes the thymidylate kinase activity of herpes simplex virus type 1 thymidine kinase

Degreve, Bart,Esnouf, Robert,De Clercq, Erik,Balzarini, Jan

, p. 285 - 293 (2007/10/03)

The broad substrate specificity of herpes simplex virus type 1 (HSV-1) thymidine kinase (TK) has provided the basis for selective antiherpetic therapy and, more recently, suicide gene therapy for the treatment of cancer. We have now constructed an HSV-1 TK mutant enzyme, in which an asparagine (N) residue is substituted for glutamine (Q) at position 125, and have evaluated the effect of this amino acid change on enzymatic activity. In marked contrast with wild-type HSV-1 TK, which displays both thymidine kinase and thymidylate kinase activities, the HSV-1 TK(Q125N) mutant was unable to phosphorylate pyrimidine nucleoside monophosphates but retained significant phosphorylation activity for thymidine and a series of antiherpetic pyrimidine and purine nucleoside analogs. The abrogation of HSV-1 TK-associated thymidylate kinase activity resulted in a 100-fold accumulation of the monophosphate form of (E)-5(2-bromovinyl)-2′-deoxyuridine (BVDU) in osteosarcoma cells transfected with the HSV-1 TK(Q125N) gene compared with osteosarcoma cells expressing wild-type HSV-1 TK. BVDU monophosphate accumulation gave rise to a much greater inhibition of cellular thymidylate synthase in HSV-1 TK(Q125N) gene-transfected cells than wild-type HSV-1 TK gene-transfected osteosarcoma tumor cells without significantly changing the cytostatic potency of BVDU for the HSV-1 TK gene-transfected tumor cells. Accordingly, the presence of the Q125N mutation in HSV-1 TK gene-transfected tumor cells was found to result in a multilog decrease in the cytostatic activity of those pyrimidine nucleoside analogs that in their monophosphate form do not have marked affinity for thymidylate synthase [i.e., 1-β-D-arabinofuranosylthymine and (E)-5-(2-bromovinyl)-1-β-D-arabinofuranosyluracil].

A methodological comparison: The advantage of phosphorimidates in expanding the sugar nucleotide repertoire

Zhao, Yongxin,Thorson, Jon S.

, p. 7568 - 7572 (2007/10/03)

-

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 491-97-4