Welcome to LookChem.com Sign In|Join Free

CAS

  • or

50417-71-5

Post Buying Request

50417-71-5 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

50417-71-5 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 50417-71-5 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 5,0,4,1 and 7 respectively; the second part has 2 digits, 7 and 1 respectively.
Calculate Digit Verification of CAS Registry Number 50417-71:
(7*5)+(6*0)+(5*4)+(4*1)+(3*7)+(2*7)+(1*1)=95
95 % 10 = 5
So 50417-71-5 is a valid CAS Registry Number.

50417-71-5Relevant articles and documents

The challenge of palladium-catalyzed aromatic azidocarbonylation: From mechanistic and catalyst deactivation studies to a highly efficient process

Miloserdov, Fedor M.,McMullin, Claire L.,Belmonte, Marta Martinez,Benet-Buchholz, Jordi,Bakhmutov, Vladimir I.,Macgregor, Stuart A.,Grushin, Vladimir V.

, p. 736 - 752 (2014/03/21)

Azidocarbonylation of iodoarenes with CO and NaN3, a novel Heck-type carbonylation reaction, readily occurs in an organic solvent-H 2O biphasic system to furnish aroyl azides at room temperature and 1 atm. The reaction is catalyzed by Xantphos-Pd and exhibits high functional group tolerance. The catalyst deactivation product, [(Xantphos)PdI2], can be reduced in situ with PMHS to Pd(0) to regain catalytic activity. In this way, the catalyst loading has been lowered to 0.2% without any losses in selectivity at nearly 100% conversion to synthesize a series of aroyl azides in 80-90% isolated yield on a gram scale. Alternatively, the ArCON3 product can be used without isolation for further transformations in situ, e.g., to isocyanates, ureas, benzamides, and iminophosphoranes. A detailed experimental and computational study has identified two main reaction pathways for the reaction. For both routes, Ar-I oxidative addition to Pd(0) is the rate-determining step. In the presence of CO in excess, the Ar-I bond is activated by the less electron-rich Pd center of a mixed carbonyl phosphine complex. Under CO-deficient conditions, a slightly lower energy barrier pathway is followed that involves Ar-I oxidative addition to a more reactive carbonyl-free (Xantphos)Pd0 species. Mass transfer in the triphasic liquid-liquid-gas system employed for the reaction plays an important role in the competition between these two reaction channels, uniformly leading to a common aroyl azido intermediate that undergoes exceedingly facile ArCO-N 3 reductive elimination. Safety aspects of the method have been investigated.

Thermal stability, decomposition paths, and Ph/Ph exchange reactions of [(Ph3P)2Pd(Ph)X] (X = I, Br, Cl, F, and HF2)

Grushin, Vladimir V.

, p. 1888 - 1900 (2008/10/08)

Complexes of the type [(Ph3P)2Pd(Ph)X], where X = I (1), Br (2), Cl (3), F (4), and HF2 (5), possess different thermal stability and reactivity toward the Pd-Ph/P-Ph exchange reactions. While 1 decomposed (16 h) in toluene at 110 °C to [Ph4P]I, Pd metal, and Ph3P, complexes 2 and 3 exhibited no sign of decomposition under these conditions. Kinetic studies of the aryl-aryl exchange reactions of [(Ph3P)2Pd(C6D5)X] in benzene-de demonstrated that the rate of exchange decreases in the order 1 > 2 > 3, the observed rate constant ratio, kI:kBr:kCl, in benzene at 75 °C being ca. 100:4:1 for 1-d5, 2-d5, and 3-d5. The exchange was facilitated by a decrease in the concentration of the complex, polar media, and a Lewis acid, e.g., Et2O·BF3. Unlike [Bu4N]PF6, which speeded up the exchange reaction of 2-d5, [Bu4N]-Br inhibited it due to the formation of anionic four-coordinate [(Ph3P)Pd(C6D5)Br2]-. The latter and its iodo analogue were generated in dichloromethane and benzene upon addition of [Bu4N]X or PPN Cl to [(Ph3P)2Pd2(Ph)2(μ-X) 2] (X = I, Br, or Cl) and characterized in solution by 1H and 31P NMR spectral data. The mechanism of the aryl-aryl exchange reactions of [(Ph3P)2Pd(C6D5)X] in noncoordinating solvents of low polarity may not require Pd-X ionization but rather involves phosphine dissociation, the ease of which decreases in the order X = I > Br > Cl, as suggested by crystallographic data. Two mechanisms govern the thermal reactions of [(Ph3P)2Pd(Ph)F], 4. One of them is similar to the aryl-aryl exchange and decomposition path for 1-3, involving a tight ion pair intermediate, [Ph4P][(Ph3P)PdF], within which two processes were shown to occur. At 75 °C, the C-P oxidative addition restores the original neutral complex (4). At 90 °C, reversible fluoride transfer from Pd to the phosphonium cation resulted in the formation of covalent [Ph4PF] and [(Ph3P)Pd], which was trapped by PhI to produce [(Ph3P)2Pd2(Ph)2(μ-I) 2]. The other decomposition path of 4 leads to the formation of [(Ph3P)3Pd], Pd, Ph2 , Ph3PF2, and Ph2P-PPh2 as main products. Unlike the aryl-aryl exchange, this decomposition reaction is not inhibited by free phosphine. The formation of biphenyl was shown to occur due to PdPh/PPh coupling on the metal center. Mechanisms accounting for the formation of these products are proposed and discussed. The facile (4 h at 75 °C) thermal decomposition of [(Ph3P)2Pd(Ph)(FHF)] (5) in benzene resulted in the clean formation of PhH, Ph3PF2, Pd metal, and [(Ph3P)3Pd].

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 50417-71-5