Welcome to LookChem.com Sign In|Join Free

CAS

  • or

5130-47-2

Post Buying Request

5130-47-2 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

5130-47-2 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 5130-47-2 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 5,1,3 and 0 respectively; the second part has 2 digits, 4 and 7 respectively.
Calculate Digit Verification of CAS Registry Number 5130-47:
(6*5)+(5*1)+(4*3)+(3*0)+(2*4)+(1*7)=62
62 % 10 = 2
So 5130-47-2 is a valid CAS Registry Number.

5130-47-2SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 14, 2017

Revision Date: Aug 14, 2017

1.Identification

1.1 GHS Product identifier

Product name hydroperoxycyclooctane

1.2 Other means of identification

Product number -
Other names Hydroperoxide,cyclooctyl

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:5130-47-2 SDS

5130-47-2Upstream product

5130-47-2Relevant articles and documents

Efficient oxidation of cycloalkanes with simultaneously increased conversion and selectivity using O2 catalyzed by metalloporphyrins and boosted by Zn(AcO)2: A practical strategy to inhibit the formation of aliphatic diacids

Shen, Hai-Min,Wang, Xiong,Ning, Lei,Guo, A-Bing,Deng, Jin-Hui,She, Yuan-Bin

, (2020/11/20)

The direct sources of aliphatic acids in cycloalkanes oxidation were investigated, and a strategy to suppress the formation of aliphatic acids was adopted through enhancing the catalytic transformation of oxidation intermediates cycloalkyl hydroperoxides to cycloalkanols by Zn(II) and delaying the emergence of cycloalkanones. Benefitted from the delayed formation of cycloalkanones and suppressed non-selective thermal decomposition of cycloalkyl hydroperoxides, the conversion of cycloalkanes and selectivity towards cycloalkanols and cycloalkanones were increased simultaneously with satisfying tolerance to both of metalloporphyrins and substrates. For cyclohexane, the selectivity towards KA-oil was increased from 80.1% to 96.9% meanwhile the conversion was increased from 3.83 % to 6.53 %, a very competitive conversion level with higher selectivity compared with current industrial process. This protocol is not only a valuable strategy to overcome the problems of low conversion and low selectivity lying in front of current cyclohexane oxidation in industry, but also an important reference to other alkanes oxidation.

Method for catalytic oxidation of cycloalkane by confinement porphyrin Co (II)

-

Paragraph 0071; 0072, (2020/05/01)

The invention relates to a method for catalytic oxidation of cycloalkane by confinement porphyrin Co (II). The method comprises the following steps: dispersing confinement cobalt porphyrin (II) in cycloalkane, sealing the reaction system, heating to 100-130 DEG C while stirring, introducing oxygen to 0.2-3.0 MPa, keeping the set temperature and oxygen pressure, stirring to react for 3.0-24.0 h, and carrying out post-treatment on a reaction solution to obtain products naphthenic alcohol and naphthenic ketone. The method achieves high selectivity of naphthenic alcohol and naphthenic ketone, andeffectively inhibits the generation of aliphatic diacid. The aliphatic diacid is low in selectivity, so that the continuity of the cycloalkane oxidation process and the separation of the products arefacilitated; the method has the potential of solving the problem that naphthenic alcohol and naphthenic ketone are easily and deeply oxidized to generate aliphatic diacid in the industrial cycloalkanecatalytic oxidation process; and the method is a novel efficient and feasible method for selective catalytic oxidation of cycloalkane.

Method for synergistically catalyzing and oxidizing cycloparaffin through confined metalloporphyrin cobalt (II)/Cu (II) salt

-

Paragraph 0045-0046, (2020/12/10)

The invention discloses a method for synergistically catalyzing and oxidizing cycloparaffin through confined metalloporphyrin cobalt (II)/Cu (II) salt. The preparation method comprises the following steps: dispersing confined metalloporphyrin cobalt (II) (0.001%-5%, g/mol) and Cu (II) salt (0.01%-10%, mol/mol) into cycloparaffin; and sealing the reaction system, heating the temperature to 90-150 DEG C while stirring, introducing an oxidant, keeping the set temperature and pressure, carrying out stirring and reacting for 2.0-24.0 hours, and carrying out after-treatment on the reaction solutionto obtain the products cycloalkyl alcohol and cycloalkyl ketone. The method disclosed by the invention has the advantages of high cycloalkyl alcohol and cycloalkyl ketone selectivity, low reaction temperature, few byproducts, small environmental influence and the like. In addition, the content of cycloalkyl hydroperoxide is low, and the safety coefficient is high. The invention provides an efficient, feasible and safe method for synthesizing cycloalkyl alcohol and cycloalkyl ketone through selective catalytic oxidation of cycloparaffin.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 5130-47-2