Welcome to LookChem.com Sign In|Join Free

CAS

  • or

6127-49-7

Post Buying Request

6127-49-7 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

6127-49-7 Usage

General Description

2-(4-Bromo-phenyl)-1H-indole is a chemical compound that belongs to the indole class of organic compounds. It is a derivative of indole with a substitution of a 4-bromo-phenyl group at the 2-position. 2-(4-BROMO-PHENYL)-1H-INDOLE is commonly used in chemical and pharmaceutical research due to its diverse biological activities and potential therapeutic applications. It has been studied for its potential as an antiviral, anticancer, and anti-inflammatory agent. Additionally, 2-(4-Bromo-phenyl)-1H-indole has also been investigated for its ability to modulate different biological pathways and its potential for use in drug development and as a chemical building block for the synthesis of various heterocyclic compounds.

Check Digit Verification of cas no

The CAS Registry Mumber 6127-49-7 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 6,1,2 and 7 respectively; the second part has 2 digits, 4 and 9 respectively.
Calculate Digit Verification of CAS Registry Number 6127-49:
(6*6)+(5*1)+(4*2)+(3*7)+(2*4)+(1*9)=87
87 % 10 = 7
So 6127-49-7 is a valid CAS Registry Number.
InChI:InChI=1/C14H10BrN/c15-12-7-5-10(6-8-12)14-9-11-3-1-2-4-13(11)16-14/h1-9,16H

6127-49-7Relevant articles and documents

One-Pot Asymmetric Oxidative Dearomatization of 2-Substituted Indoles by Merging Transition Metal Catalysis with Organocatalysis to Access C2-Tetrasubstituted Indolin-3-Ones

Zhao, Yong-Long,An, Jian-Xiong,Yang, Fen-Fen,Guan, Xiang,Fu, Xiao-Zhong,Li, Zong-Qin,Wang, Da-Peng,Zhou, Meng,Yang, Yuan-Yong,He, Bin

, p. 1277 - 1285 (2022/03/14)

A one-pot approach for the asymmetric synthesis of C2-tetrasubstituted indolin-3-ones from 2-substituted indoles was developed via merging transition metal catalysis with organocatalysis. This strategy involves two processes, including CuI catalyzed oxidative dearomatization of 2-substituted indoles using O2 as green oxidant, and followed by an proline-promoted asymmetric Mannich reaction with ketones or aldehydes. A series of C2-tetrasubstituted indolin-3-ones were obtained in 35–86% yields, 2:1->20:1 dr and 48–99% ee. Moreover, the synthetic 2-tetrasubstituted indolin-3-ones could be easily transformed into 1H-[1,3] oxazino [3,4-a]indol-5(3H)-ones via a [4+1] cyclization process. In addition, the synthetic compound 3 s show certain antibacterial activity against S. aureus ATCC25923 and multi-drug resistance bacterial strain of S. aureus (20151027077) and its MIC values up to 8 μg/mL and 16 μg/mL, respectively. (Figure presented.).

Acid-catalyzed cleavage of C-C bonds enables atropaldehyde acetals as masked C2 electrophiles for organic synthesis

Chen, Shaomin,Gu, Yanlong,Li, Minghao

supporting information, p. 10431 - 10434 (2021/10/12)

Acid-catalyzed tandem reactions of atropaldehyde acetals were established for the synthesis of three important molecules, 2,2-disubstituted indolin-3-ones, naphthofurans and stilbenes. The synthesis was realized using novel reaction cascades, which involved the same two initial steps: (i) SN2′ substitution, in which the atropaldehyde acted as an electrophile; and (ii) oxidative cleavage of the carbon-carbon bond of the generated phenylacetaldehyde-type products. Compared with literature methods, the present protocol not only avoided the use of expensive noble metal catalysts, but also enabled a simple operation.

Discovery of New 4-Indolyl Quinazoline Derivatives as Highly Potent and Orally Bioavailable P-Glycoprotein Inhibitors

Chen, Zhe-Sheng,Dai, Qing-Qing,Li, Guo-Bo,Liu, Hong-Min,Liu, Hui,Wang, Bo,Wang, Shaomeng,Yu, Bin,Yuan, Shuo,Zhang, Jing-Ya,Zhang, Xiao-Nan,Zuo, Jia-Hui

, p. 14895 - 14911 (2021/10/12)

The major drawbacks of P-glycoprotein (P-gp) inhibitors at the clinical stage make the development of new P-gp inhibitors challenging and desirable. In this study, we reported our structure-activity relationship studies of 4-indolyl quinazoline, which led to the discovery of a highly effective and orally active P-gp inhibitor, YS-370. YS-370 effectively reversed multidrug resistance (MDR) to paclitaxel and colchicine in SW620/AD300 and HEK293T-ABCB1 cells. YS-370 bound directly to P-gp, did not alter expression or subcellular localization of P-gp in SW620/AD300 cells, but increased the intracellular accumulation of paclitaxel. Furthermore, YS-370 stimulated the P-gp ATPase activity and had moderate inhibition against CYP3A4. Significantly, oral administration of YS-370 in combination with paclitaxel achieved much stronger antitumor activity in a xenograft model bearing SW620/Ad300 cells than either drug alone. Taken together, our data demonstrate that YS-370 is a promising P-gp inhibitor capable of overcoming MDR and represents a unique scaffold for the development of new P-gp inhibitors.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 6127-49-7