Welcome to LookChem.com Sign In|Join Free

CAS

  • or

61812-54-2

Post Buying Request

61812-54-2 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

61812-54-2 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 61812-54-2 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 6,1,8,1 and 2 respectively; the second part has 2 digits, 5 and 4 respectively.
Calculate Digit Verification of CAS Registry Number 61812-54:
(7*6)+(6*1)+(5*8)+(4*1)+(3*2)+(2*5)+(1*4)=112
112 % 10 = 2
So 61812-54-2 is a valid CAS Registry Number.

61812-54-2SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 15, 2017

Revision Date: Aug 15, 2017

1.Identification

1.1 GHS Product identifier

Product name bis-(4-fluorobenzyl)-ether

1.2 Other means of identification

Product number -
Other names -

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:61812-54-2 SDS

61812-54-2Relevant articles and documents

Bis(pertrifluoromethylcatecholato)silane: Extreme Lewis Acidity Broadens the Catalytic Portfolio of Silicon

Thorwart, Thadd?us,Roth, Daniel,Greb, Lutz

supporting information, p. 10422 - 10427 (2021/05/27)

Given its earth abundance, silicon is ideal for constructing Lewis acids of use in catalysis or materials science. Neutral silanes were limited to moderate Lewis acidity, until halogenated catecholato ligands provoked a significant boost. However, catalytic applications of bis(perhalocatecholato)silanes were suffering from very poor solubility and unknown deactivation pathways. In this work, the novel per(trifluoromethyl)catechol, H2catCF3, and adducts of its silicon complex Si(catCF3)2 (1) are described. According to the computed fluoride ion affinity, 1 ranks among the strongest neutral Lewis acids currently accessible in the condensed phase. The improved robustness and affinity of 1 enable deoxygenations of aldehydes, ketones, amides, or phosphine oxides, and a carbonyl-olefin metathesis. All those transformations have never been catalyzed by a neutral silane. Attempts to obtain donor-free 1 attest to the extreme Lewis acidity by stabilizing adducts with even the weakest donors, such as benzophenone or hexaethyl disiloxane.

Aryl Boronic Acid Catalysed Dehydrative Substitution of Benzylic Alcohols for C?O Bond Formation

Estopi?á-Durán, Susana,Donnelly, Liam J.,Mclean, Euan B.,Hockin, Bryony M.,Slawin, Alexandra M. Z.,Taylor, James E.

supporting information, p. 3950 - 3956 (2019/02/16)

A combination of pentafluorophenylboronic acid and oxalic acid catalyses the dehydrative substitution of benzylic alcohols with a second alcohol to form new C?O bonds. This method has been applied to the intermolecular substitution of benzylic alcohols to form symmetrical ethers, intramolecular cyclisations of diols to form aryl-substituted tetrahydrofuran and tetrahydropyran derivatives, and intermolecular crossed-etherification reactions between two different alcohols. Mechanistic control experiments have identified a potential catalytic intermediate formed between the aryl boronic acid and oxalic acid.

Efficient carbon-supported heterogeneous molybdenum-dioxo catalyst for chemoselective reductive carbonyl coupling

Liu, Shengsi,Li, Jiaqi,Jurca, Titel,Stair, Peter C.,Lohr, Tracy L.,Marks, Tobin J.

, p. 2165 - 2169 (2017/07/22)

Reductive coupling of various carbonyl compounds to the corresponding symmetric ethers with dimethylphenylsilane is reported using a carbon-supported dioxo-molybdenum catalyst. The catalyst is air- and moisture-stable and can be easily separated from the reaction mixture for recycling. In addition, the catalyst is chemoselective, thus enabling the synthesis of functionalized ethers without requiring sacrificial ligands or protecting groups.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 61812-54-2