Welcome to LookChem.com Sign In|Join Free

CAS

  • or

7147-14-0

Post Buying Request

7147-14-0 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

7147-14-0 Usage

General Description

3-Cyano-5-nitroindole is a chemical compound with the molecular formula C?H?N?O?. It is a nitroindole derivative with a nitro group at the 5-position and a cyano group at the 3-position. 3-CYANO-5-NITROINDOLE is commonly used as a building block in the synthesis of various pharmaceutical and agrochemical compounds due to its versatile reactivity and ability to serve as a key intermediate in organic reactions. It also exhibits potential biological activities, making it a valuable target for the development of new drugs. Studies have shown that 3-cyano-5-nitroindole possesses anti-inflammatory, anti-proliferative, and anticancer properties, which further highlight its significance in medicinal chemistry and drug discovery.

Check Digit Verification of cas no

The CAS Registry Mumber 7147-14-0 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 7,1,4 and 7 respectively; the second part has 2 digits, 1 and 4 respectively.
Calculate Digit Verification of CAS Registry Number 7147-14:
(6*7)+(5*1)+(4*4)+(3*7)+(2*1)+(1*4)=90
90 % 10 = 0
So 7147-14-0 is a valid CAS Registry Number.
InChI:InChI=1/C9H5N3O2/c10-4-6-5-11-9-2-1-7(12(13)14)3-8(6)9/h1-3,5,11H

7147-14-0SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 19, 2017

Revision Date: Aug 19, 2017

1.Identification

1.1 GHS Product identifier

Product name 5-Nitro-1H-indole-3-carbonitrile

1.2 Other means of identification

Product number -
Other names 5-nitro-1H-indole-3-carbonitrile

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:7147-14-0 SDS

7147-14-0Relevant articles and documents

Design, synthesis, and biological evaluation of N-(3-cyano-1H-indol-5/6-yl)-6-oxo-1,6-dihydropyrimidine-4-carboxamides and 5-(6-oxo-1,6-dihydropyrimidin-2-yl)-1H-indole-3-carbonitriles as novel xanthine oxidase inhibitors

Zhang, Bing,Duan, Yulin,Yang, Yuwei,Mao, Qing,Lin, Fengwei,Gao, Jun,Dai, Xiwen,Zhang, Peng,Li, Qiuhua,Li, Jinxin,Dai, Ronghua,Wang, Shaojie

, (2021/10/26)

Xanthine oxidase (XO) has been an important target for the treatment of hyperuricemia and gout. The analysis of potential interactions of pyrimidinone and 3-cyano indole pharmacophores present in the corresponding reported XO inhibitors with parts of the XO active pocket indicated that they both can be used as effective fragments for the fragment-based design of nonpurine XO inhibitors. In this paper, we adopted the fragment-based drug design strategy to link the two fragments with an amide bond to design the type 1 compounds 13a–13w,14c, 14d, 14f, 14g, 14j, 14k, and 15g. Compound 13g displayed an evident XO inhibitory potency (IC50 = 0.16 μM), which was 52.3-fold higher than that of allopurinol (IC50 = 8.37 μM). For comparison, type 2 compounds 5-(6-oxo-1,6-dihydropyrimidin-2-yl)-1H-indole-3-carbonitriles (25c–25g) were also designed by linking the two fragments with a single bond directly. The results showed that compound 25c from the latter series displayed the best inhibitory potency (IC50 = 0.085 μM), and it was 98.5-fold stronger than that of allopurinol (IC50 = 8.37 μM). These results suggested that amide and single bonds were applicable for linking the two fragments together to obtain potent nonpurine XO inhibitors. The structure–activity relationship results revealed that hydrophobic groups at N-atom of the indole moiety were indispensable for the improvement of the inhibitory potency in vitro against XO. In addition, enzyme kinetics studies suggested that compounds 13g and 25c, as the most promising XO inhibitors for the two types of target compounds, acted as mixed-type inhibitors for XO. Moreover, molecular modeling studies suggested that the pyrimidinone and indole moieties of the target compounds could interact well with key amino acid residues in the active pocket of XO. Furthermore, in vivo hypouricemic effect demonstrated that compounds 13g and 25c could effectively reduce serum uric acid levels at an oral dose of 10 mg/kg. Therefore, compounds 13g and 25c could be potential and efficacious agents for the treatment of hyperuricemia and gout.

N-(indol-5-yl) aromatic heterocyclic amide compound and preparation method and application thereof

-

Paragraph 0049-0050, (2021/06/09)

The invention belongs to the field of medicines, and relates to an N-(indole-5-yl) aromatic heterocyclic amide compound and a preparation method and application thereof. The structural general formula of the N-(indol-5-yl) aromatic heterocyclic amide compound is shown in the specification. A pharmaceutical composition comprises the N-(indol-5-yl) aromatic heterocyclic amide compound, a pharmaceutically acceptable salt, a hydrate or a solvate of the N-(indol-5-yl) aromatic heterocyclic amide compound and a pharmaceutically acceptable carrier of the N-(indol-5-yl) aromatic heterocyclic amide compound. The invention further discloses application of the N-(indol-5-yl) aromatic heterocyclic amide compound or the pharmaceutically acceptable salt, hydrate or solvate thereof or the pharmaceutical composition in preparation of anti-hyperuricemia and anti-gout drugs. Tests prove that the compound shows a good effect in an in-vitro xanthine oxidase inhibitory activity test. The preparation method provided by the invention is simple and feasible, relatively high in yield and easy for large-scale production.

N-(3-cyano-1H-indol-5-yl)isonicotinamide and N-(3-cyano-1H-indol-5-yl)-1H-benzo[d]imidazole-5-carboxamide derivatives: Novel amide-based xanthine oxidase inhibitors

Tu, Shun,Zhang, Ting-jian,Zhang, Yi,Zhang, Xu,Zhang, Zhen-hao,Meng, Fan-hao

, (2021/07/31)

Our previous work demonstrated that amide is an efficient linker to explore chemical space of xanthine oxidase (XO) inhibitors that are entirely different from febuxostat and topiroxostat. In this effort, with 3-cyano-1H-indol-5-yl as a key moiety, two series of amide-based XO inhibitors, N-(3-cyano-1H-indol-5-yl)isonicotinamides (2a-w) and N-(3-cyano-1H-indol-5-yl)-1H-benzo[d]imidazole-5-carboxamides (3a-i), were designed and synthesized. The structure-activity relationship investigation identified N-(3-cyano-1-cyclopentyl-1H-indol-5-yl)-1H-benzo[d]imidazole-5-carboxamide (3i, IC50 = 0.62 μM) as the most promising compound, with 14.4-fold higher in vitro inhibitory potency than allopurinol (IC50 = 8.91 μM). Molecular simulations provided reasonable interaction modes for the representative compounds. Furthermore, in vivo activity evaluation demonstrated that compound 3i (oral dose of 12.8 mg/kg) has obviously hypouricemic effect on a potassium oxonate induced hyperuricemic rat model. Cytotoxicity assay and ADME prediction also supported that 3i is an excellent lead for further exploration of amide-based XO inhibitors.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 7147-14-0