Welcome to LookChem.com Sign In|Join Free

CAS

  • or

831-14-1

Post Buying Request

831-14-1 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

831-14-1 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 831-14-1 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 8,3 and 1 respectively; the second part has 2 digits, 1 and 4 respectively.
Calculate Digit Verification of CAS Registry Number 831-14:
(5*8)+(4*3)+(3*1)+(2*1)+(1*4)=61
61 % 10 = 1
So 831-14-1 is a valid CAS Registry Number.

831-14-1SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 14, 2017

Revision Date: Aug 14, 2017

1.Identification

1.1 GHS Product identifier

Product name 3-(cyclohexen-1-yl)benzaldehyde

1.2 Other means of identification

Product number -
Other names Methanone,3-cyclohexen-1-ylphenyl

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:831-14-1 SDS

831-14-1Relevant articles and documents

Direct C-H Arylation of Aldehydes by Merging Photocatalyzed Hydrogen Atom Transfer with Palladium Catalysis

Chen, Guangying,Cheng, Gui-Juan,Guo, Bin,Li, Xiaobao,Ran, Chongzhao,Wang, Lu,Wang, Ting,Wei, Jun-Jie,Zheng, Caijuan,Zheng, Chao

, p. 7543 - 7551 (2020/08/21)

Herein, we report that merging palladium catalysis with hydrogen atom transfer (HAT) photocatalysis enabled direct arylations and alkenylations of aldehyde C-H bonds, facilitating visible light-catalyzed construction of a variety of ketones. Tetrabutylammonium decatungstate and anthraquinone were found to act as synergistic HAT photocatalysts. Density functional theory calculations suggested a Pd0-PdII-PdIII-PdI-Pd0 pathway and revealed that regeneration of the Pd0 catalyst and the photocatalyst occurs simultaneously in the presence of KHCO3. This regeneration features a low energy barrier, promoting efficient coupling of the palladium catalytic cycle with the photocatalytic cycle. The work reported herein suggests great promise for further applications of HAT photocatalysis in palladium-catalyzed cross-coupling and C-H functionalization reactions to be successful.

Method for preparing aryl ketone based on iron-catalyzed free radical-free radical coupling reaction such as ketonic acid decarboxylation and fatty aldehyde de-carbonylation

-

Paragraph 0045-0046, (2020/05/05)

The invention discloses a method for preparing an aryl ketone derivative based on a free radical-free radical cross-coupling reaction such as ketonic acid decarboxylation and fatty aldehyde de-carbonylation. The method comprises the following steps: reacting aryl-substituted ketonic acid with fatty aldehyde under the catalytic action of ferric triacetylacetonate to generate an aryl ketone derivative; the gram-grade reaction can be realized by the method only by using 3mol% of an iron catalyst; and the method has the advantages of no need of consumption of a large amount of a Lewis acid catalyst or a stoichiometric organic metal reagent, mild reaction conditions, one-step reaction, few by-products, wide substrate application range and scalable reaction, and overcomes the defects of large catalyst consumption, insufficient functional group tolerance, many by-products and the like in the prior art.

Palladium-Catalyzed Aerobic Oxidative Dehydrogenation of Cyclohexenes to Substituted Arene Derivatives

Iosub, Andrei V.,Stahl, Shannon S.

supporting information, p. 3454 - 3457 (2015/03/30)

A palladium(II) catalyst system has been identified for aerobic dehydrogenation of substituted cyclohexenes to the corresponding arene derivatives. Use of sodium anthraquinone-2-sulfonate (AMS) as a cocatalyst enhances the product yields. A wide range of functional groups are tolerated in the reactions, and the scope and limitations of the method are described. The catalytic dehydrogenation of cyclohexenes is showcased in an efficient route to a phthalimide-based TRPA1 activity modulator.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 831-14-1