101693-39-4Relevant articles and documents
Exploring the Biocatalytic Scope of a Novel Enantioselective Halohydrin Dehalogenase from an Alphaproteobacterium
Xue, Feng,Ya, Xiangju,Xiu, Yuansong,Tong, Qi,Wang, Yuqi,Zhu, Xinhai,Huang, He
, p. 629 - 637 (2019/01/25)
A gene encoding halohydrin dehalogenase from an alphaproteobacterium (AbHHDH) was identified, cloned and over-expressed in Escherichia coli. AbHHDH was able to catalyze the stereoselective dehalogenation of prochiral and racemic halohydrins. It showed the highest enantioselectivity in the dehalogenation of 20?mM (R,S)-2-bromo-1-phenylethanol, which yielded (S)-2-bromo-1-phenylethanol with 99% ee and 34.5% yield. Moreover, AbHHDH catalyzed the azidolysis of epoxides with low to moderate (S)-enantioselectivity. The highest enantioselectivity (E = 18.6) was observed when (R,S)-benzyl glycidyl ether was used as the substrate. A sequential kinetic resolution catalyzed by HHDH was employed for the synthesis of chiral 1-chloro-3-phenoxy-2-propanol. We prepared enantiopure (S)-isomer with a high enantiopurity of ee > 99% and a yield of 30.7% (E-value: 21.3) by kinetic resolution of 20?mM substrate. The (S)-isomer with 99% ee readily obtained from 40 to 150?mM (R,S)-1-chloro-3-phenoxy-2-propanol. Taken together, the results of this study demonstrate the applicability of this HHDH for the production of optically active compounds. [Figure not available: see fulltext.].
Asymmetric Hydrolytic and Aminolytic Kinetic Resolution of Racemic Epoxides using Recyclable Macrocyclic Chiral Cobalt(III) Salen Complexes
Tak, Rajkumar,Kumar, Manish,Menapara, Tusharkumar,Gupta, Naveen,Kureshy, Rukhsana I.,Khan, Noor-ul H.,Suresh
supporting information, p. 3990 - 4001 (2017/11/22)
New chiral macrocyclic cobalt(III) salen complexes were synthesized and used as catalyst for the asymmetric kinetic resolution (AKR) of terminal epoxides and glycidyl ethers with aromatic/aliphatic amines and water as nucleophiles. This is the first occasion where a Co(III) salen complex demonstrated its ability to catalyze AKR as well as hydrolytic kinetic resolution (HKR) reactions. Excellent enantiomeric excesses of the epoxides, the corresponding amino alcohols and diols (upto 99%) with quantitative yields were achieved by using the chiral Co(III) salen complexes in dichloromethane at room temperature. This protocol was further extended for the synthesis of two important drug molecules, i.e., (S)-propranolol and (R)-naftopidil. The catalytic system was also explored for the synthesis of chirally pure diols and chiral cyclic carbonates using carbon dioxide as a greener renewable C1 source. The catalyst was recycled for upto 5 catalytic cycles with retention of enantioselectivity. (Figure presented.).
Asymmetric hydrolytic kinetic resolution with recyclable polymeric Co(iii)-salen complexes: A practical strategy in the preparation of (S)-metoprolol, (S)-toliprolol and (S)-alprenolol: Computational rationale for enantioselectivity
Roy, Tamal,Barik, Sunirmal,Kumar, Manish,Kureshy, Rukhsana I.,Ganguly, Bishwajit,Khan, Noor-Ul H.,Abdi, Sayed H. R.,Bajaj, Hari C.
, p. 3899 - 3908 (2015/02/19)
A series of chiral polymeric Co(iii)-salen complexes based on a number of achiral and chiral linkers were synthesized and their catalytic performances were assessed in the asymmetric hydrolytic kinetic resolution of terminal epoxides. The effects of the linker were judiciously studied and it was found that in the case of the chiral BINOL-based polymeric salen complex 1, there was an enrichment in catalyst reactivity and enantioselectivity of the unreacted epoxide, particularly in the case of short as well as long chain aliphatic epoxides. Good isolated yields of the unreacted epoxide (up to 46% compared to 50% theoretical yield) along with high enantioselectivity (up to 99%) were obtained in most cases using catalyst 1. Further studies showed that catalyst 1 could retain its catalytic activity for six cycles under the present reaction conditions without any significant loss in activity or enantioselectivity. To show the practical applicability of the above synthesized catalyst we have synthesised some potent chiral β-blockers in moderate yield and high enantioselectivity using complex 1. The DFT (M06-L/6-31+G??//ONIOM(B3LYP/6-31G?:STO-3G)) calculations revealed that the chiral BINOL linker influences the enantioselectivity achieved with Co(iii)-salen complexes. Further, the transition state calculations show that the R-BINOL linker with the (S,S)-Co(iii)-salen complex is energetically preferred over the corresponding S-BINOL linker with the (S,S)-Co(iii)-salen complex for the HKR of 1,2-epoxyhexane. The role of non-covalent C-H?π interactions and steric effects has been discussed to control the HKR reaction of 1,2-epoxyhexane.
Asymmetric aminolytic kinetic resolution of racemic epoxides using recyclable chiral polymeric Co(III)-salen complexes: A protocol for total utilization of racemic epoxide in the synthesis of (R)-naftopidil and (S)-propranolol
Kumar, Manish,Kureshy, Rukhsana I.,Shah, Arpan K.,Das, Anjan,Khan, Noor-Ul H.,Abdi, Sayed H. R.,Bajaj, Hari C.
, p. 9076 - 9084 (2013/10/08)
Chiral polymeric Co(III) salen complexes with chiral ((R)/(S)-BINOL, diethyl tartrate) and achiral (piperazine and trigol) linkers with varying stereogenic centers were synthesized for the first time and used as catalysts for aminolytic kinetic resolution (AKR) of a variety of terminal epoxides and glycidyl ethers to get enantio-pure epoxides (ee, 99%) and N-protected β-amino alcohols (ee, 99%) with quantitative yield in 16 h at RT under optimized reaction conditions. This protocol was also used for the synthesis of two enantiomerically pure drug molecules (R)-Naftopidil (α1- blocker) and (S)-Propranolol (β-blocker) as a key step via AKR of single racemic naphthylglycidyl ether with Boc-protected isoproylamine with 100% epoxide utilization at 1 g level. The catalyst 1 was successfully recycled for a number of times.
Chiral nanoporous metal-metallosalen frameworks for hydrolytic kinetic resolution of epoxides
Zhu, Chengfeng,Yuan, Guozan,Chen, Xu,Yang, Zhiwei,Cui, Yong
supporting information; experimental part, p. 8058 - 8061 (2012/07/14)
Chiral nanoporous metal-organic frameworks are constructed by using dicarboxyl-functionalized chiral Ni(salen) and Co(salen) ligands. The Co(salen)-based framework is shown to be an efficient and recyclable heterogeneous catalyst for hydrolytic kinetic resolution (HKR) of racemic epoxides with up to 99.5% ee. The MOF structure brings Co(salen) units into a highly dense arrangement and close proximity that enhances bimetallic cooperative interactions, leading to improved catalytic activity and enantioselectivity in HKR compared with its homogeneous analogues, especially at low catalyst/substrate ratios.
An unusual (R)-selective epoxide hydrolase with high activity for facile preparation of enantiopure glycidyl ethers
Zhao, Jing,Chu, Yan-Yan,Li, Ai-Tao,Ju, Xin,Kong, Xu-Dong,Pan, Jiang,Tang, Yun,Xu, Jian-He
experimental part, p. 1510 - 1518 (2011/08/03)
A novel epoxide hydrolase (BMEH) with unusual (R)-enantioselectivity and very high activity was cloned from Bacillus megaterium ECU1001. Highest enantioselectivities (E>200) were achieved in the bioresolution of ortho-substituted phenyl glycidyl ethers and para-nitrostyrene oxide. Worthy of note is that the substrate structure remarkably affected the enantioselectivities of the enzyme, as a reversed (S)-enantiopreference was unexpectedly observed for the ortho-nitrophenyl glycidyl ether. As a proof-of-concept, five enantiopure epoxides (>99% ee) were obtained in high yields, and a gram-scale preparation of (S)-ortho-methylphenyl glycidyl ether was then successfully performed within a few hours, indicating that BMEH is an attractive biocatalyst for the efficient preparation of optically active epoxides. Copyright
Bacillus alcalophilus MTCC10234 catalyzed enantioselective kinetic resolution of aryl glycidyl ethers
Bala, Neeraj,Chimni, Swapandeep Singh,Saini, Harvinder Singh,Chadha, Bhupinder Singh
experimental part, p. 128 - 134 (2010/10/04)
The phenyl glycidyl ether derivatives have been kinetically resolved with the growing cells of Bacillus alcalophilus MTCC10234 yielding (S)-epoxides with up to >99% ee and (R)-diols with up to 89% ee. The enantiomeric ratio (E) of up to 67 has been obtained for biohydrolysis process. The effect of different substituents of phenyl glycidyl ether on the biocatalytic efficiency of B. alcalophilus MTCC10234 showed preference for methyl- and chloro-substituted aryl glycidyl ether derivatives whereas nitro-derivatives were transformed at a slower rate. 2,6-Dimethylphenyl glycidyl ether which contains a bulky aryl group having methyl group on both the ortho positions was resolved with an E=39.
Highly efficient recyclable CoIII-salen complexes in the catalyzed asymmetric aminolytic kinetic resolution of aryloxy/terminal epoxides for the simultaneous production of N-protected 1,2-amino alcohols and the corresponding epoxides in high op
Kureshy, Rukhsana I.,Prathap, K. Jeya,Agrawal, Santosh,Kumar, Manish,Khan, Noor-Ul H.,Abdi, Sayed H. R.,Bajaj, Hari C.
supporting information; experimental part, p. 2863 - 2871 (2009/09/29)
Chiral CoIII-salen complexes 1-6 bearing different substituents at the 3,3′- and 5,5′-positions of the salen unit, namely H, tBu, morpholmomethyl, and piperidinomethyl, have been synthesized. These complexes were used as catalysts in an environ
Jacobsen-type enantioselective hydrolysis of aryl glycidyl ethers. 31P NMR analysis of the enantiomeric composition of oxiranes
Bredikhin,Strunskaya,Novikova,Azancheev,Sharafutdinova,Bredikhina
, p. 213 - 218 (2007/10/03)
The enantioselective partial hydrolysis of a number of racemic aryl glycidyl ethers in the presence of chiral Co(salen)-catalyst was studied. The enantiomeric composition of the isolated (R)-aryl glycidyl ethers was analyzed by 31P NMR using optically active substituted 2-chloro-1,3,2- dioxaphospholanes. A synthesis of β-adrenoblocking agents (S)-toliprolol and (S)-moprolol based on the simultaneously obtained (S)-3-aryloxypropane-1,2- diols was proposed.
Cardiovascular hybrid drugs: New benzazepinone derivatives as bradycardic agents endowed with selective β1-Non-competitive antagonism
Bisi, Alessandra,Rampa, Angela,Budriesi, Roberta,Gobbi, Silvia,Belluti, Federica,Ioan, Pierfranco,Valoti, Ermanno,Chiarini, Alberto,Valenti, Piero
, p. 1353 - 1361 (2007/10/03)
The synthesis and pharmacological profile of some hybrid compounds bearing both the benzazepinone moiety present in Zatebradine and typical β-blocker aryloxypropanolamine groups are described. The new compounds proved to be endowed with negative chronotropic and inotropic activity and are weak vasorelaxant agents. The cardiodepressant action is probably due to selective β1-noncompetitive reversible antagonism. Both enantiomers of the most active compound 5c were synthesized and they showed a different cardiovascular profile, that is (+)-(R)-enantiomer displays affinity for cardiac β1-adrenoceptors, while (-)-(S)-enantiomer shows specificity for vessel smooth muscle.