1111096-20-8Relevant articles and documents
NEW INDANYLOXYDIHYDROBENZOFURANYLACETIC ACIDS
-
Paragraph 0863; 0892, (2013/10/07)
The present invention relates to compounds of general formula I, wherein the groups R1, R2 and m are defined as in claim 1, which have valuable pharmacological properties, in particular bind to the GPR40 receptor and modulate its activity. The compounds are suitable for treatment and prevention of diseases which can be influenced by this receptor, such as metabolic diseases, in particular diabetes type 2.
NEW INDANYLOXYDIHYDROBENZOFURANYLACETIC ACID DERIVATIVES AND THEIR USE AS GPR40 RECEPTOR AGONISTS
-
Page/Page column 189, (2013/10/21)
The present invention relates to compounds of general formula I, (I), wherein the groups R1, R2 and m are defined as in claim 1, which have valuable pharmacological properties, in particular bind to the GPR40 receptor and modulate its activity. The compounds are suitable for treatment and prevention of diseases which can be influenced by this receptor, such as metabolic diseases, in particular diabetes type 2.
Sterically controlled iodination of arenes via iridium-catalyzed C-H borylation
Partridge, Benjamin M.,Hartwig, John F.
supporting information, p. 140 - 143 (2013/03/28)
A mild method to prepare aryl and heteroaryl iodides by sequential C-H borylation and iodination is reported. The regioselectivity of this process is controlled by steric effects on the C-H borylation step and is complementary to existing methods to form aryl iodides. The iodination of boronic esters has potential for the synthesis of radiolabeled aryl iodides, as demonstrated by the concise synthesis of a potential tracer for SPECT imaging.
Process for the synthesis of phenols from arenes
-
Page 21-22, (2008/06/13)
A process to synthesize substituted phenols such as those of the general formula RR′R″Ar(OH) wherein R, R′, and R″ are each independently hydrogen or any group which does not interfere in the process for synthesizing the substituted phenol including, but not limited to, halo, alkyl, alkoxy, carboxylic ester, amine, amide; and Ar is any variety of aryl or hetroaryl by means of oxidation of substituted arylboronic esters is described. In particular, a metal-catalyzed C—H activation/borylation reaction is described, which when followed by direct oxidation in a single or separate reaction vessel affords phenols without the need for any intermediate manipulations. More particularly, a process wherein Ir-catalyzed borylation of arenes using pinacolborane (HBPin) followed by oxidation of the intermediate arylboronic ester by OXONE is described.