1172-63-0Relevant articles and documents
Reduction chemistry of natural pyrethrins and preliminary insecticidal activity of reduced pyrethrins
Markham, Todd E.,Kotze, Andrew C.,Duggan, Peter J.,Johnston, Martin R.
, p. 268 - 281 (2020/12/23)
The natural extract pyrethrum is an insecticidal oil derived from Tanacetum cinerariifolium that is commonly used in domestic and agricultural pesticides. The major constituents of the extract are the Pyrethrins, six esters that provide pyrethrum with its insecticidal properties. These Pyrethrins readily degrade through several environmental means and as such, there can be significant Pyrethrin losses during processing and long-term storage of pyrethrum-based insecticides. This work attempts to alleviate the effect of these degradative processes through the pursuit of stabilised Pyrethrins by chemically removing oxidatively sensitive functionality. Several reduced Pyrethrin analogues were produced and a method to convert the more sensitive Pyrethrins present in the pyrethrum concentrate into their respective more stable jasmolin counterparts, as a mixture with the over-reduced tetrahydropyrethrins, was developed. All other reduction processes abolished insecticidal activity against Lucilia cuprina larvae, whereas some isomerised analogues showed comparable potency with the individual natural pyrethrin esters. This work has revealed new insights into the structure-activity relationships in this unique class of insecticide.
Total Syntheses of All Six Chiral Natural Pyrethrins: Accurate Determination of the Physical Properties, Their Insecticidal Activities, and Evaluation of Synthetic Methods
Ashida, Yuichiro,Kawamoto, Momoyo,Matsuo, Noritada,Moriyama, Mizuki,Tanabe, Yoo
, p. 2984 - 2999 (2020/03/24)
Chiral total syntheses of all six insecticidal natural pyrethrins (three pyrethrin I and three pyrethrin II compounds) contained in the chrysanthemum (pyrethrum) flower were performed. Three common alcohol components [(S)-cinerolone, (S)-jasmololone, and (S)-pyrethrolone] were synthesized: (i) straightforward Sonogashira-type cross-couplings using available (S)-4-hydroxy-3-methyl-2-(2-propynyl)cyclopent-2-en-1-ones (the prallethrin alcohol) for (S)-cinerolone (overall 52% yield, 98% ee) and (S)-pyrethrolone (overall 54% yield, 98% ee) and (ii) traditional decarboxylative-aldol condensation and lipase-catalyzed optical resolution for (S)-jasmololone (overall 16% yield, 96% ee). Two counter acid segments [(1R,3R)-chrysanthemic acid (A) and (1R,3R)-second chrysanthemic acid precursor (B)] were prepared: (i) C(1) epimerization of ethyl (±)-chrysanthemates and optical resolution using (S)-naphthylethylamine to afford A (96% ee) and (ii) concise derivatization of A to B (96% ee). All six pyrethrin esters (cinerin I/II, jasmolin I/II, and pyrethrin I/II) were successfully synthesized utilizing an accessible esterification reagent (TsCl/N-methylimidazole). To investigate the stereostructure-activity relationship, all four chiral stereoisomers of cinerin I were synthesized. Three alternative syntheses of (±)-jasmololone were investigated (methods utilizing Piancatelli rearrangement, furan transformation, and 1-nitropropene transformation). Insecticidal activity assay (KD50 and IC50) against the common mosquito (Culex pipiens pallens) revealed that (i) pyrethrin I > pyrethrin II, (ii) pyrethrin I (II) > cinerin I (II) ? jasmolin I (II), and (iii) "natural" cinerin I ? three "unnatural" cinerin I compounds (apparent chiral discrimination).