127680-91-5Relevant articles and documents
Structure-Activity Relationship for the Picolinamide Antibacterials that Selectively Target Clostridioides difficile
Speri, Enrico,Qian, Yuanyuan,Janardhanan, Jeshina,Masitas, Cesar,Lastochkin, Elena,De Benedetti, Stefania,Wang, Man,Schroeder, Valerie A.,Wolter, William R.,Oliver, Allen G.,Fisher, Jed F.,Mobashery, Shahriar,Chang, Mayland
supporting information, p. 991 - 995 (2021/05/27)
Clostridioides difficile is a leading health threat. This pathogen initiates intestinal infections during gut microbiota dysbiosis caused by oral administration of antibiotics. C. difficile is difficult to eradicate due to its ability to form spores, which are not susceptible to antibiotics. To address the urgent need for treating recurrent C. difficile infection, antibiotics that selectively target C. difficile over common gut microbiota are needed. We herein describe the class of picolinamide antibacterials which show potent and selective activity against C. difficile. The structure-activity relationship of 108 analogues of isonicotinamide 4, a compound that is equally active against methicillin-resistant Staphylococcus aureus and C. difficile, was investigated. Introduction of the picolinamide core as exemplified by analogue 87 resulted in exquisite potency and selectivity against C. difficile. The ability of the picolinamide class to selectively target C. difficile and to prevent gut dysbiosis holds promise for the treatment of recurrent C. difficile infection.
Modulation of the fluorescence properties of diketopyrrolopyrroles: Via various electron-rich substituents
Purc, Anna,Banasiewicz, Marzena,Glodkowska-Mrowka, Eliza,Gryko, Daniel T.
, p. 2877 - 2885 (2016/04/26)
Four diketopyrrolopyrroles have been synthesized starting from heterocyclic aromatic nitriles. It was found that the negative influence of electron-donating groups on the reactivity of nitriles can be overcome by the presence of an electron-deficient pyri
Diarylthiazole: An antimycobacterial scaffold potentially targeting PrrB-PrrA two-component system
Bellale, Eknath,Naik, Maruti,Vb, Varun,Ambady, Anisha,Narayan, Ashwini,Ravishankar, Sudha,Ramachandran, Vasanthi,Kaur, Parvinder,McLaughlin, Robert,Whiteaker, James,Morayya, Sapna,Guptha, Supreeth,Sharma, Sreevalli,Raichurkar, Anandkumar,Awasthy, Disha,Achar, Vijayshree,Vachaspati, Prakash,Bandodkar, Balachandra,Panda, Manoranjan,Chatterji, Monalisa
supporting information, p. 6572 - 6582 (2014/10/15)
Diarylthiazole (DAT), a hit from diversity screening, was found to have potent antimycobacterial activity against Mycobacterium tuberculosis (Mtb). In a systematic medicinal chemistry exploration, we demonstrated chemical opportunities to optimize the potency and physicochemical properties. The effort led to more than 10 compounds with submicromolar MICs and desirable physicochemical properties. The potent antimycobacterial activity, in conjunction with low molecular weight, made the series an attractive lead (antibacterial ligand efficiency (ALE) >0.4). The series exhibited excellent bactericidal activity and was active against drug-sensitive and resistant Mtb. Mutational analysis showed that mutations in prrB impart resistance to DAT compounds but not to reference drugs tested. The sensor kinase PrrB belongs to the PrrBA two component system and is potentially the target for DAT. PrrBA is a conserved, essential regulatory mechanism in Mtb and has been shown to have a role in virulence and metabolic adaptation to stress. Hence, DATs provide an opportunity to understand a completely new target system for antimycobacterial drug discovery.
6-heterocyclyl pyrazolo [3,4-d]pyrimidin-4-ones and compositions and method of use thereof
-
, (2008/06/13)
Novel 6-heterocyclyl-pyrazolo[3,4-d]pyrimidin-4-ones, useful in treating cardiovascular disease, are prepared by reacting a 5-amino-1H-pyrazole-4-carboxamide with heterocyclylcarboxaldehyde or by reacting a 5-amino-1H-pyrazole-4-carbonitrile with a heterocyclylcarboxamidine, followed by diazotization and hydrolysis of the resulting 4-amino-6-heterocyclyl-pyrazolo[3,4-d]pyrimidine.
A Study of the Photochemically Induced Reaction of Pyridine-2,4-dicarbonitrile with Primary and Secondary Amines. A Direct Synthesis of Aminocyanopyridines
Bernardi, Rosanna,Caronna, Tullio,Morrocchi, Sergio,Ursini, Maurizio,Vittimberga, Bruno M.
, p. 97 - 100 (2007/10/02)
A novel synthesis of alkylaminopyridinecarbonitriles by a photoinitiated substitution reaction between pyridine-2,4-dicarbonitrile and certain amines is described.The mechanism is discussed.