129960-90-3Relevant articles and documents
Versatile and Efficient Site-Specific Protein Functionalization by Tubulin Tyrosine Ligase
Schumacher, Dominik,Helma, Jonas,Mann, Florian A.,Pichler, Garwin,Natale, Francesco,Krause, Eberhard,Cardoso, M. Cristina,Hackenberger, Christian P. R.,Leonhardt, Heinrich
, p. 13787 - 13791 (2015)
A novel chemoenzymatic approach for simple and fast site-specific protein labeling is reported. Recombinant tubulin tyrosine ligase (TTL) was repurposed to attach various unnatural tyrosine derivatives as small bioorthogonal handles to proteins containing a short tubulin-derived recognition sequence (Tub-tag). This novel strategy enables a broad range of high-yielding and fast chemoselective C-terminal protein modifications on isolated proteins or in cell lysates for applications in biochemistry, cell biology, and beyond, as demonstrated by the site-specific labeling of nanobodies, GFP, and ubiquitin.
A Genetically Encoded Two-Dimensional Infrared Probe for Enzyme Active-Site Dynamics
Wang, Li,Zhang, Jia,Han, Ming-Jie,Zhang, Lu,Chen, Chao,Huang, Aiping,Xie, Ruipei,Wang, Guosheng,Zhu, Jiangrui,Wang, Yuchuan,Liu, Xiaohong,Zhuang, Wei,Li, Yunliang,Wang, Jiangyun
, p. 11143 - 11147 (2021)
While two-dimensional infrared (2D-IR) spectroscopy is uniquely suitable for monitoring femtosecond (fs) to picosecond (ps) water dynamics around static protein structures, its utility for probing enzyme active-site dynamics is limited due to the lack of site-specific 2D-IR probes. We demonstrate the genetic incorporation of a novel 2D-IR probe, m-azido-L-tyrosine (N3Y) in the active-site of DddK, an iron-dependent enzyme that catalyzes the conversion of dimethylsulfoniopropionate to dimethylsulphide. Our results show that both the oxidation of active-site iron to FeIII, and the addition of denaturation reagents, result in significant decrease in enzyme activity and active-site water motion confinement. As tyrosine residues play important roles, including as general acids and bases, and electron transfer agents in many key enzymes, the genetically encoded 2D-IR probe N3Y should be broadly applicable to investigate how the enzyme active-site motions at the fs–ps time scale direct reaction pathways to facilitating specific chemical reactions.
Viral polymerase inhibitors
-
, (2008/06/13)
A compound of the formula I: wherein: X is CH or N; Y is O or S; Z is OH, NH2, NMeR3, NHR3; OR3 or 5- or 6-membered heterocycle, having 1 to 4 heteroatoms selected from 0, N and S, said heterocycle being optionally substituted with from 1 to 4 substituents; A is N, COR7 or CR5, wherein R5 is H, halogen, or (C1-6) alkyl and R7 is H or (C1-6 alkyl), with the proviso that X and A are not both N; R6 is H, halogen, (C1-6 alkyl) or OR7, wherein R7 is H or (C1-6 alkyl); R1 is selected from the group consisting of 5- or 6-membered heterocycle having 1 to 4 heteroatoms selected from O, N, and S, phenyl, phenyl(C1-3)alkyl, (C2-6)alkenyl, phenyl(C2-6)alkenyl, (C3-6)cycloalkyl, (C1-6)alkyl, CF3, 9- or 10-membered heterobicycle having 1 to 4 heteroatoms selected from O, N and S, wherein said heterocycle, phenyl, phenyl(C2-6)alkenyl and phenyl(C1-3)alkyl), alkenyl, cycloalkyl, (C1-6)alkyl, and heterobicycle are all optionally substituted with from 1 to 4 substituents R2 is selected from (C1-6)alkyl, (C3-7)cycloalkyl, (C3-7)cycloalkyl(C1-3)alkyl, (C6-10)bicycloalkyl, adamantyl, phenyl, and pyridyl, all of which is optionally substituted with from1 to 4 substituents; R3 is selected from H, (C1-6)alkyl, (C3-6)cycloalkyl, (C36)cycloalkyl(C1-6)alkyl, (C6-10)aryl, (C6-10)aryl(C1-6)alkyl, (C2-6)alkenyl, (C3-6)cycloalkyl(C2-6)alkenyl, (C6-10)aryl(C2-6)alkenyl, N{(C1-6)alkyl}2, NHCOO(C1-6)alkyl(C6-10)aryl, NHCO(C6-10)aryl, (C1-6)alkyl-5- or 10-atom heterocycle, having 1 to 4 heteroatoms selected from O, N and S, and 5- or 10-atom heterocycle having 1 to 4 heteroatoms selected from O, N and S; wherein said alkyl, cycloalkyl, aryl, alkenyl and heterocycle are all optionally substituted with from 1 to 4 substituents; n is zero or 1; or a detectable derivative or salt thereof. The compounds of the invention may be used as inhibitors of hepatitis C virus replication. The invention further provides a method for treating or preventing hepatitis C virus infection.