131588-96-0Relevant articles and documents
Chiral aminoalcohols and squaric acid amides as ligands for asymmetric borane reduction of ketones: Insight to in situ formed catalytic system by DOSY and multinuclear NMR experiments
Dobrikov, Georgi M.,Nikolova, Yana,Petkova, Zhanina,Shestakova, Pavletta
supporting information, (2021/11/27)
A series of squaric acid amides (synthesized in 66–99% isolated yields) and a set of chiral aminoalcohols were comparatively studied as ligands in a model reaction of reduction of α-chloroacetophenone with BH3?SMe2. In all cases, the aminoalcohols demonstrated better efficiency (up to 94% ee), while only poor asymmetric induction was achieved with the corresponding squaramides. A mechanistic insight on the in situ formation and stability at room temperature of intermediates generated from ligands and borane as possible precursors of the oxazaborolidine-based catalytic system has been obtained by1H DOSY and multinuclear 1D and 2D (1H,10/11B,13C,15N) NMR spectroscopy of equimolar mixtures of borane and selected ligands. These results contribute to better understanding the complexity of the processes occurring in the reaction mixture prior to the possible oxazaborolidine formation, which play a crucial role on the degree of enantioselectivity achieved in the borane reduction of α-chloroacetophenone.
Anticancer Agents, 15. Squaric Acid Diethyl Ester: A New Coupling Reagent for the Formation of Drug Biopolymer Conjugates. Synthesis of Squaric Acid Ester Amides and Diamides
Tietze, Lutz F.,Arlt, Michael,Beller, Matthias,Gluesenkamp, Karl-Heinz,Jaehde, Eckhard,Rajewsky, Manfred F.
, p. 1215 - 1221 (2007/10/02)
Reaction of squaric acid diethyl ester (1) with a slight excess of a primary or secondary amine 2 in ethanol, dichloromethane or aqueous buffer (pH 7) at 20 deg C for 0.3 - 12 h gives the squaric acid amide esters 3 in mostly excellent yields.Treatment of