142875-24-9Relevant articles and documents
Spectroscopic and theoretical studies on intramolecular OH-π hydrogen bonding in 4-substituted 2-allylphenols
Rademacher, Paul,Khelashvili, Levan,Kowski, Klaus
, p. 2620 - 2625 (2005)
2-Allylphenol (1) constitutes a mixture of conformers, in which an OH-π hydrogen bonded closed (1a) and open form (1b) can be distinguished. 4-Substituted 2-allyphenols (2-9) have been synthesised and investigated by theoretical and spectroscopic methods.
Dialkoxybenzene and dialkoxyallylbenzene feeding and oviposition deterrents against the cabbage looper, trichoplusia ni: Potential insect behavior control agents
Akhtar, Yasmin,Yu, Yang,Isman, Murray B.,Plettner, Erika
, p. 4983 - 4991 (2011/08/06)
The antifeedant, oviposition deterrent, and toxic effects of individual dialkoxybenzene compounds/sets and of hydroxy- or alkoxy-substituted allylbenzenes, obtained through Claisen rearrangement of substituted allyloxybenzenes, were assessed against the cabbage looper, Trichoplusia ni, in laboratory bioassays. Most of the compounds/sets strongly deterred larval feeding, with some exhibiting mild toxic and oviposition deterrent effects as well. Some of the compounds/sets were more active than the commercial insect repellent, DEET (N,N-diethyl-m-toluamide), as both feeding and oviposition deterrents against the cabbage looper. On the basis of the obtained oviposition data a general hypothesis was proposed regarding the oviposition sites: one binding mode with the alkyl and allyl groups on the same side of the benzene ring resulted in deterrence, the other with alkyl and allyl groups on opposite sides of the benzene ring resulted in stimulation. The results suggest some structure-activity relationships useful in improving the efficacy of the compounds and designing new, nontoxic insect control agents for agriculture.
Agonists and antagonists of antennal responses of gypsy moth (Lymantria dispar) to the pheromone (+)-disparlure and other odorants
Plettner, Erika,Gries, Regine
body text, p. 3708 - 3719 (2011/07/30)
Insects use the sense of smell to guide many behaviors that are important for their survival. The gypsy moth uses a pheromone to bring females and males together over long distances. Male moth antennae are equipped with innervated sensory hairs that selectively respond to pheromone components and other odors. Host plant odors, in particular, are detected by moths and sometimes cause an enhancement of the antennal and behavioral responses of the moths to their pheromone. Inspired by naturally occurring agonists and antagonists of insect pheromone responses, we have screened, by electroantennogram (EAG) recordings, a collection of compound sets and of individual compounds. We have detected interference of some compounds with the EAG responses of male gypsy moth antennae to the pheromone. We describe three activities: (1) short-term inhibition or enhancement of mixed compound + pheromone plumes, (2) long-term inhibition of pure pheromone plumes following a mixed compound + pheromone plume, and (3) inhibition of the recovery phase of mixed compound + pheromone plumes. Long-term inhibition was robust, decayed within 30 s, and correlated with the inhibition of recovery: for both activities clear structure-activity patterns were detected. The commercial repellent N,N-diethyltoluamide (DEET) was included for comparison. The most active and reproducible short-term inhibitor was a mixture of 1 -allyl-2,4-dimethoxybenzene and 2-allyl-1,3-dimethoxybenzene. The most active long-term inhibitors were a set of 1-alkoxy-4-propoxybenzenes, DEET, and 1-ethoxy-4-propoxybenzene. DEET was more specific in the olfactory responses it inhibited than 1-ethoxy-4-propoxybenzene, and DEET did not inhibit recovery, whereas 1-ethoxy-4-propoxybenzene did. Target sites for the three activities are discussed.