155866-71-0Relevant articles and documents
Lipophilic tail modifications of 2-(hydroxymethyl)pyrrolidine scaffold reveal dual sphingosine kinase 1 and 2 inhibitors
Li, Hao,Sibley, Christopher D.,Kharel, Yugesh,Huang, Tao,Brown, Anne M.,Wonilowicz, Laura G.,Bevan, David R.,Lynch, Kevin R.,Santos, Webster L.
, (2021/01/07)
The sphingosine 1-phosphate (S1P) signaling pathway is an attractive target for pharmacological manipulation due to its involvement in cancer progression and immune cell chemotaxis. The synthesis of S1P is catalyzed by the action of sphingosine kinase 1 or 2 (SphK1 or SphK2) on sphingosine and ATP. While potent and selective inhibitors of SphK1 or SphK2 have been reported, development of potent dual SphK1/SphK2 inhibitors are still needed. Towards this end, we report the structure–activity relationship profiling of 2-(hydroxymethyl)pyrrolidine-based inhibitors with 22d being the most potent dual SphK1/SphK2 inhibitor (SphK1 Ki = 0.679 μM, SphK2 Ki = 0.951 μM) reported in this series. 22d inhibited the growth of engineered Saccharomyces cerevisiae and decreased S1P levels in histiocytic lymphoma myeloid cell line (U937 cells), demonstrating inhibition of SphK1 and 2 in vitro. Molecular modeling studies of 22d docked inside the Sph binding pocket of both SphK1 and SphK2 indicate essential hydrogen bond between the 2-(hydroxymethyl)pyrrolidine head to interact with aspartic acid and serine residues near the ATP binding pocket, which provide the basis for dual inhibition. In addition, the dodecyl tail adopts a “J-shape” conformation found in crystal structure of sphingosine bound to SphK1. Collectively, these studies provide insight into the intermolecular interactions in the SphK1 and 2 active sites to achieve maximal dual inhibitory activity.
Discovery of N-{4-[(3-hydroxyphenyl)-3-methylpiperazin-1-yl]methyl-2- methylpropyl}-4-phenoxybenzamide analogues as selective kappa opioid receptor antagonists
Kormos, Chad M.,Jin, Chunyang,Cueva, Juan Pablo,Runyon, Scott P.,Thomas, James B.,Brieaddy, Lawrence E.,Mascarella, S. Wayne,Navarro, Hernán A.,Gilmour, Brian P.,Carroll, F. Ivy
, p. 4551 - 4567 (2013/07/19)
There is continuing interest in the discovery and development of new κ opioid receptor antagonists. We recently reported that N-substituted 3-methyl-4-(3-hydroxyphenyl)piperazines were a new class of opioid receptor antagonists. In this study, we report the syntheses of two piperazine JDTic-like analogues. Evaluation of the two compounds in an in vitro [35S] GTPγS binding assay showed that neither compound showed the high potency and κ opioid receptor selectivity of JDTic. A library of compounds using the core scaffold 21 was synthesized and tested for their ability to inhibit [35S]GTPγS binding stimulated by the selective κ opioid agonist U69,593. These studies led to N-[(1S)-1-{[(3S)-4-(3-hydroxyphenyl)-3- methylpiperazin-1-yl]methyl}-2-methylpropyl]-4-phenoxybenzamide (11a), a compound that showed good κ opioid receptor antagonist properties. An SAR study based on 11a provided 28 novel analogues. Evaluation of these 28 compounds in the [35S]GTPγS binding assay showed that several of the analogues were potent and selective κ opioid receptor antagonists.