157066-15-4Relevant articles and documents
Preparation of chiral α-oxy-[2H1]methyllithiums of 99% ee and determination of their configurational stability
Kapeller, Dagmar,Barth, Roland,Mereiter, Kurt,Hammerschmidt, Friedrich
, p. 914 - 923 (2007/10/03)
(Tributylstannyl)methyl 2,2,6,6-tetramethylpiperidine-1-carboxylate was metalated with t-BuLi/TMEDA at -78 °C and borylated with the mixed borate derived from (R,R)-1,2-dicyclohexylethane-1,2-diol and t-butanol to give diastereomeric boronates 31/32 in equal amounts. Boronates 31 and 32 were reduced with LiBEt3D and then oxidized with basic H2O 2 to give (S)- and (R)-tributylstannyl-[1-2H 2]methanol of 99% ee, respectively. Treatment of their respective phosphates with n-BuLi at -78 and 0 °C gave microscopically configurationally stable phosphinyloxy-substituted [2H 1]methyllithiums, which rearranged to hydroxy-[1-2H 1]-methylphosphonates of ee > 98% (phosphate-phosphonate rearrangement). The N,N-iisopropylcarbamates of the enantiomeric tributylstannyl-[1-2H1]methanols were transmetalated to give carbamoyloxy-substituted chiral [2H1]methyllithiums, which were macroscopically configurationally stable for prolonged periods of time (up to 3 h, ee still 99%) at -78 °C, deduced from trapping experiments with benzaldehyde. The chemical stability of these methyllithiums ended at -50 °C. The stereochemistry of the monoprotected and monodeuterated 1-phenylethane-1,2-diols obtained was secured by spectroscopic comparison of their Mosher esters with that of all four stereoisomeric 1-phenyl-[1- 2H1]ethane-1,2-diols synthesized independently. Furthermore, the configurations of the boronates and the chiral methyllithiums derived from them were deduced from a single-crystal X-ray structure analysis of a carbamate in which the tributylstannyl group had been replaced by the [(1R)-menthyl]dimethylstannyl group.
Organosilicon compounds with functional groups proximate to silicon. XVII. Synthetic and mechanistic aspects of the lithiation of α,β-epoxyalkylsilanes and related α-heterosubstituted epoxides
Eisch, John J.,Galle, James E.
, p. 293 - 314 (2007/10/02)
A series of α-heterosubstituted epoxides, , has been found to undergo lithiation in the temperature range of -75 to -115 deg C at the C-H bond of the epoxide.The substituent Z could be Me3Si, Ph3Si, n-Bu3Sn, Ph3Sn, PhSO2, (OEt)2PO and Ph; the groups R and R' were H, Ph and n-C6H13; and the lithiating reagents were n-butyllithium, t-butyllithium and lithium diisopropylamide in donor media of THF or TMEDA.The lithiation occurs with retention of configuration and the resulting lithio-epoxide is unstable above 0 deg C, decomposing in a carbenoid manner.The lithiation is facile except for compounds where Z and R (an alkyl or aryl) are cis-oriented; where Z = R3Sn, lithiation occurs by tin-lithium, rather than hydrogen-lithium, exchange.The lithio-epoxides thereby generated can be quenched with various reagents to yield epoxides where the epoxide H has been replaced by D, Me3Sn, R, RCO and COOH.The utility of this procedure in organic synthesis is emphasized.Finally, the possible explanations for the acidity of such α-heterosubstituted epoxides and for the relative stability of the derived lithio-epoxides are considered and assessed.