161798-16-9Relevant articles and documents
Design, synthesis and biological evaluation of esculetin derivatives as anti-tumour agents
Wang,Xia,Yu, Yang,Lu, Jun-Xia,Zou, Li-Wei,Feng, Lei,Ge, Guang-Bo,Yang, Ling
, p. 53477 - 53483 (2015)
Esculetin, a naturally catecholic coumarin, possess multiple pharmacological activities including anti-tumour, anti-inflammatory and anti-oxidant. However, the extensive phase II metabolism and rapid elimination from the human body significantly hinder esculetin and its derivatives as drug leads/candidates. To improve both the metabolic stability and the anti-tumour activity of esculetin via rational modification, a series of C-4 and C-8 substituted derivatives were designed and synthesized by perchloric acid catalysed von Pechmann reaction and Mannich reaction, respectively. The in vitro metabolic half-life in human liver S9 and anti-tumour activities in A549 and B16 cell lines of the newly synthesized compounds were assayed. Of these compounds, 8-(pyrrolidin-1-ylmethyl)-4-trifluoromethyl esculetin 15 was the most potent candidate compound, with almost a 20-fold increase in antiproliferative activity and a 3-fold prolonged half-life in human liver S9 compared with the parent compound 1. In addition, the potential structure-activity relationship and structure-metabolic stability relationship were discussed. Notably, the introduction of a nitrogen containing group as a hydrogen bond acceptor at the C-8 position of esculetin can improve both the metabolic stability and anti-tumour activity. All of these findings are very helpful for the structural modification of esculetin and other bioactive phenolic compounds to improve their phase II metabolic stability and bioactivity synchronously.
Synthesis and structure-activity relationship of coumarins as potent Mcl-1 inhibitors for cancer treatment
Xia, Yang-Liu,Wang, Jing-Jing,Li, Shi-Yang,Liu, Yong,Gonzalez, Frank J.,Wang, Ping,Ge, Guang-Bo
, (2020/11/25)
Myeloid cell leukemia-1 (Mcl-1) is a validated and attractive target for cancer therapy. Over-expression of Mcl-1 in many cancers allows cancer cells to evade apoptosis and contributes to their resistance to current chemotherapeutics. In this study, more than thirty coumarin derivatives with different substituents were designed and synthesized, and their Mcl-1 inhibitory activities evaluated using a fluorescence polarization-based binding assay. The results showed that the catechol group was a key constituent for Mcl-1 inhibitory activity of the coumarins, and methylation of the catechol group led to decreased inhibitory activity. The introduction of a hydrophobic electron-withdrawing group at the C-4 position of 6,7-dihydroxycoumarin, enhanced Mcl-1 inhibitory capacity, and a hydrophilic group in this position was unbeneficial to the inhibitory potency. In addition, the introduction of a nitrogen-containing group to the C-5 or C-8 position, which allowed an intramolecular hydrogen bond, was also unfavorable for Mcl-1 inhibition. Among all coumarins tested, 4-trifluoromethyl-6,7-dihydroxycoumarin (Cpd 4) displayed the most potent inhibitory activity towards Mcl-1 (Ki = 0.21 ± 0.02 μM, IC50 = 1.21 ± 0.56 μM, respectively), for which the beneficial effect on taxol resistance was also validated in A549 cells. A strong interaction between Cpd 4 and Mcl-1 in docking simulations further supported the observed potent Mcl-1 inhibition ability of Cpd 4. 3D-QSAR analysis of all tested coumarin derivatives further provides new insights into the relationships linking the inhibitory effects on Mcl-1 and the steric-electrostatic properties of coumarins. These findings could be of great value for medicinal chemists for the design and development of more potent Mcl-1 inhibitors for biomedical applications.
Coumarin-Caged Compounds of 1-Naphthaleneacetic Acid as Light-Responsive Controlled-Release Plant Root Stimulators
Han, Bao-Hang,Jarussophon, Suwatchai,Kaewchangwat, Narongpol,Niamnont, Nakorn,Prateepchinda, Sagaw,Suttisintong, Khomson,Thanayupong, Eknarin,Unger, Onuma,Yata, Teerapong
, p. 6268 - 6279 (2020/07/31)
Six coumarin-caged compounds of 1-naphthaleneacetic acid (NAA) comprising different substituents on the coumarin moiety were synthesized and evaluated for their photophysical and chemical properties as light-responsive controlled-release plant root stimulators. The 1H NMR and HPLC techniques were used to verify the release of NAA from the caged compounds. After irradiation at 365 nm, the caged compounds exhibited the fastest release rate at t1/2 of 6.7 days and the slowest release rate at t1/2 of 73.7 days. Caged compounds at high concentrations (10-5 and 10-6 M) significantly stimulate secondary root germination while free NAA at the same level is toxic and leads to inhibition of secondary root germination. The cytotoxicity of the caged compounds against fibroblasts and vero cells were evaluated, and the results suggested that, at 10-5-10-6 M, caged compounds exhibited no significant cytotoxicity to the cells. Thus, the caged compounds of NAA in this study could be of great benefit as efficient agrochemicals.