168890-46-8Relevant articles and documents
Chemoenzymatic Synthesis of Substituted Azepanes by Sequential Biocatalytic Reduction and Organolithium-Mediated Rearrangement
Zawodny, Wojciech,Montgomery, Sarah L.,Marshall, James R.,Finnigan, James D.,Turner, Nicholas J.,Clayden, Jonathan
supporting information, p. 17872 - 17877 (2019/01/04)
Enantioenriched 2-aryl azepanes and 2-arylbenzazepines were generated biocatalytically by asymmetric reductive amination using imine reductases or by deracemization using monoamine oxidases. The amines were converted to the corresponding N′-aryl ureas, which rearranged on treatment with base with stereospecific transfer of the aryl substituent to the 2-position of the heterocycle via a configurationally stable benzyllithium intermediate. The products are previously inaccessible enantioenriched 2,2-disubstituted azepanes and benzazepines.
Stereoselectivity and Structural Characterization of an Imine Reductase (IRED) from Amycolatopsis orientalis
Aleku, Godwin A.,Man, Henry,France, Scott P.,Leipold, Friedemann,Hussain, Shahed,Toca-Gonzalez, Laura,Marchington, Rebecca,Hart, Sam,Turkenburg, Johan P.,Grogan, Gideon,Turner, Nicholas J.
, p. 3880 - 3889 (2016/07/06)
The imine reductase AoIRED from Amycolatopsis orientalis (Uniprot R4SNK4) catalyzes the NADPH-dependent reduction of a wide range of prochiral imines and iminium ions, predominantly with (S)-selectivity and with ee's of up to >99%. AoIRED displays up to 100-fold greater catalytic efficiency for 2-methyl-1-pyrroline (2MPN) compared to other IREDs, such as the enzyme from Streptomyces sp. GF3546, which also exhibits (S)-selectivity, and thus, AoIRED is an interesting candidate for preparative synthesis. AoIRED exhibits unusual catalytic properties, with inversion of stereoselectivity observed between structurally similar substrates, and also, in the case of 1-methyl-3,4-dihydroisoquinoline, for the same substrate, dependent on the age of the enzyme after purification. The structure of AoIRED has been determined in an "open" apo-form, revealing a canonical dimeric IRED fold in which the active site is formed between the N- and C-terminal domains of participating monomers. Co-crystallization with NADPH gave a "closed" form in complex with the cofactor, in which a relative closure of domains, and associated loop movements, has resulted in a much smaller active site. A ternary complex was also obtained by cocrystallization with NADPH and 1-methyl-1,2,3,4-tetrahydroisoquinoline [(MTQ], and it reveals a binding site for the (R)-amine product, which places the chiral carbon within 4 ? of the putative location of the C4 atom of NADPH that delivers hydride to the C? -N bond of the substrate. The ternary complex has permitted structure-informed mutation of the active site, resulting in mutants including Y179A, Y179F, and N241A, of altered activity and stereoselectivity.
An (R)-imine reductase biocatalyst for the asymmetric reduction of cyclic imines
Hussain, Shahed,Leipold, Friedemann,Man, Henry,Wells, Elizabeth,France, Scott P.,Mulholland, Keith R.,Grogan, Gideon,Turner, Nicholas J.
, p. 579 - 583 (2015/03/05)
Although the range of biocatalysts available for the synthesis of enantiomerically pure chiral amines continues to expand, few existing methods provide access to secondary amines. To address this shortcoming, we have over-expressed the gene for an (R)-imine reductase [(R)-IRED] from Streptomyces sp. GF3587 in Escherichia coli to create a recombinant whole-cell biocatalyst for the asymmetric reduction of prochiral imines. The (R)-IRED was screened against a panel of cyclic imines and two iminium ions and was shown to possess high catalytic activity and enantioselectivity. Preparative-scale synthesis of the alkaloid (R)-coniine (90 % yield; 99 % ee) from the imine precursor was performed on a gram-scale. A homology model of the enzyme active site, based on the structure of a closely related (R)-IRED from Streptomyces kanamyceticus, was constructed and used to identify potential amino acids as targets for