170642-27-0Relevant articles and documents
Structure-guided engineering of: Meso -diaminopimelate dehydrogenase for enantioselective reductive amination of sterically bulky 2-keto acids
Cheng, Xinkuan,Chen, Xi,Feng, Jinhui,Wu, Qiaqing,Zhu, Dunming
, p. 4994 - 5002 (2018/10/17)
meso-Diaminopimelate dehydrogenase (DAPDH) and mutant enzymes are an excellent choice of biocatalysts for the conversion of 2-keto acids to the corresponding d-amino acids. However, their application in the enantioselective reductive amination of bulky 2-keto acids, such as phenylglyoxylic acid, 2-oxo-4-phenylbutyric acid, and indole-3-pyruvic acid, is still challenging. In this study, the structure-guided site-saturation mutagenesis of a Symbiobacterium thermophilum DAPDH (StDAPDH) gave rise to a double-site mutant W121L/H227I, which showed dramatically improved enzyme activities towards various 2-keto acids including these sterically bulky substrates. Several d-amino acids were prepared in optically pure form. The molecular docking of substrates into the active sites of wild-type and mutant W121L/H227I enzymes revealed that the substrate binding cavity of the mutant enzyme was reshaped to accommodate these bulky substrates, thus leading to higher enzyme activity. These results lay a foundation for further shaping the substrate binding pocket and manipulating the interactions between the substrate and binding sites to access highly active d-amino acid dehydrogenases for the preparation of synthetically challenging d-amino acids.
Method for the synthesis of compounds of formula 1 and derivatives thereof
-
Page 15, (2008/06/13)
Mono-substituted and di-substituted alpha-amino acids and derivatives thereof, substituted at the alpha positon with one (mono-) or two (di-) substituents (R2 and/or R3) as shown in Formula 1: N(R4R5)C(R2R3)CO(OR1).
Highly practical methodology for the synthesis of D- and L-α-amino acids, N-protected α-amino acids, and N-methyl-α-amino acids
Myers, Andrew G.,Gleason, James L.,Yoon, Taeyoung,Kung, Daniel W.
, p. 656 - 673 (2007/10/03)
Full details are provided for an exceedingly practical method to synthesize D- and L-α-amino acids, N-protected α-amino acids, and N-methyl-α-amino acids, employing as a key step the asymmetric alkylation of pseudoephedrine glycinamide (1) or pseudoephedrine sarcosinamide (2). Practical procedures for the synthesis of 1 and 2 from pseudoephedrine and glycine methyl ester or sarcosine methyl ester, respectively, are presented. Optimum protocols for the enolization and subsequent alkylation of 1 and 2 are described. Alkylation reactions of 1 and 2 are found to be quite efficient with a wide range of alkyl halide substrates, and the products are formed with high diastereoselectivity. The products of these alkylation reactions are hydrolyzed efficiently and with little to no racemization simply by heating in water or water-dioxane mixtures. This protocol provides an exceedingly practical method for the preparation of salt-free α-amino acids of high enantiomeric purity. Alternatively, the alkylation products may be hydrolyzed in high yield and with little to no racemization by heating with aqueous sodium hydroxide. The alkaline hydrolyzate can then be treated with an acylating reagent to provide directly highly enantiomerically enriched N-protected derivatives such as N-Boc and N-Fmoc. Key features necessary for the successful execution of these experimental procedures are identified.