17302-33-9Relevant articles and documents
Production of liquid hydrocarbon fuels with acetoin and platform molecules derived from lignocellulose
Zhu, Chenjie,Shen, Tao,Liu, Dong,Wu, Jinglan,Chen, Yong,Wang, Linfeng,Guo, Kai,Ying, Hanjie,Ouyang, Pingkai
supporting information, p. 2165 - 2174 (2016/04/19)
Acetoin, a novel C4 platform molecule derived from new ABE (acetoin-butanol-ethanol) type fermentation via metabolic engineering, was used for the first time as a bio-based building block for the production of liquid hydrocarbon fuels. A series of diesel or jet fuel range C9-C14 straight, branched, or cyclic alkanes were produced in excellent yields by means of C-C coupling followed by hydrodeoxygenation reactions. Hydroxyalkylation/alkylation of acetoin with 2-methylfuran was investigated over a series of solid acid catalysts. Among the investigated candidates, zirconia supported trifluoromethanesulfonic acid showed the highest activity and stability. In the aldol condensation step, a basic ionic liquid [H3N+-CH2-CH2-OH][CH3COO-] was identified as an efficient and recyclable catalyst for the reactions of acetoin with furan based aldehydes. The scope of the process has also been studied by reacting acetoin with other aldehydes, and it was found that abnormal condensation products were formed from the reactions of acetoin with aromatic aldehydes through an aldol condensation-pinacol rearrangement route when amorphous aluminium phosphate was used as a catalyst. And the final hydrodeoxygenation step could be achieved by using a simple and handy Pd/C + H-beta zeolite system, and no or a negligible amount of oxygenates was observed after the reaction. Excellent selectivity was also observed using the present system, and the clean formation of hydrocarbons with a narrow distribution of alkanes occurred in most cases.
Synthesis, characterization and isomerization performance of micro/mesoporous materials based on H-ZSM-22 zeolite
Liu, Suyao,Ren, Jie,Zhang, Huaike,Lv, Enjing,Yang, Yong,Li, Yong-Wang
, p. 11 - 23 (2016/01/20)
Micro/mesoporous materials with different mesoporosities were prepared through recrystallization of H-ZSM-22 zeolite in alkaline solution with cetyltrimethylammonium bromide template (CTAB). The structure, morphology, pore properties, acidity and isomerization performance of the catalysts by using the resulting materials were characterized and assessed. The dissolution and recrystallization procedure introduced the well-developed mesoporous structure of MCM-41 type with the meso-scale channels of about 3 nm in size on the outer surfaces of the microporous H-ZSM-22 zeolites, forming the micro/mesoporous materials, which possessed increased weak B acid sites at the pore mouths and a reduced amount of total acid sites. It is shown that the presence of well-developed mesopores could remarkably improve the selectivity to multi-branched products and suppress the side cracking reactions in n-dodecane isomerization. The micro/mesoporous Pt/ZSM-22/MCM-41 bifunctional catalyst with suitable recrystallization degree exhibits high isomerization selectivity under high conversion in long-chain n-alkane isomerization compared to the original microporous Pt/H-ZSM-22 catalyst.
PRODUCTION OF LIQUID FUELS (SYLVAN-LIQUID-FUELS) FROM 2-METHYLFURAN
-
Page/Page column 6, (2013/02/27)
The present invention describes a procedure for the production of liquid fuel having a content high in alkanes and low in oxygenated compounds, comprising as a minimum: —a first step of alkylation of 2-methylfuran (commonly denominated Sylvan) with a furan alcohol 2 having the formula: (2), wherein R1 is H or an aliphatic or aromatic or heteroaromatic moiety, R2 is H or an aliphatic or aromatic or heteroaromatic moiety, and R3 is H, hydroxymethyl or an aliphatic or aromatic or heteroaromatic moiety, in the presence of a catalyst, —a second step of hydrogenation and dehydration of the compound obtained in step 1 in the presence of hydrogen, utilising suitable hydrogenation and dehydration catalysts.