182883-41-6Relevant articles and documents
SAR evolution towards potent C-terminal carboxamide peptide inhibitors of Zika virus NS2B-NS3 protease
Abate, Luigi,Amaudrut, Jerome,Beghetto, Elisa,Bianchi, Elisabetta,Bresciani, Alberto,Colarusso, Stefania,Conte, Immacolata,Ferrigno, Federica,Missineo, Antonino,Montalbetti, Christian,Ontoria, Jesus M.,Paonessa, Giacomo,Pavone, Francesca,Ponzi, Simona,Tomei, Licia,Toniatti, Carlo
supporting information, (2022/02/05)
Zika virus (ZIKV) is a member of the Flaviviridae family that can cause neurological disorders and congenital malformations. The NS2B-NS3 viral serine protease is an attractive target for the development of new antiviral agents against ZIKV. We report here a SAR study on a series of substrate-like linear tripeptides that inhibit in a non-covalent manner the NS2B-NS3 protease. Optimization of the residues at positions P1, P2, P3 and of the N-terminal and C-terminal portions of the tripeptide allowed the identification of inhibitors with sub-micromolar potency with phenylglycine as arginine-mimicking group and benzylamide as C-terminal fragment. Further SAR exploration and application of these structural changes to a series of peptides having a 4-substituted phenylglycine residue at the P1 position led to potent compounds showing double digit nanomolar inhibition of the Zika protease (IC50 = 30 nM) with high selectivity against trypsin-like proteases and the proteases of other flavivirus, such as Dengue 2 virus (DEN2V) and West Nile virus (WNV).
Beyond Basicity: Discovery of Nonbasic DENV-2 Protease Inhibitors with Potent Activity in Cell Culture
Kühl, Nikos,Leuthold, Mila M.,Behnam, Mira A. M.,Klein, Christian D.
supporting information, p. 4567 - 4587 (2021/05/06)
The viral serine protease NS2B-NS3 is one of the promising targets for drug discovery against dengue virus and other flaviviruses. The molecular recognition preferences of the protease favor basic, positively charged moieties as substrates and inhibitors, which leads to pharmacokinetic liabilities and off-target interactions with host proteases such as thrombin. We here present the results of efforts that were aimed specifically at the discovery and development of noncharged, small-molecular inhibitors of the flaviviral proteases. A key factor in the discovery of these compounds was a cellular reporter gene assay for the dengue protease, the DENV2proHeLa system. Extensive structure-activity relationship explorations resulted in novel benzamide derivatives with submicromolar activities in viral replication assays (EC50 0.24 μM), selectivity against off-target proteases, and negligible cytotoxicity. This structural class has increased drug-likeness compared to most of the previously published active-site-directed flaviviral protease inhibitors and includes promising candidates for further preclinical development.
Discovery of Nanomolar Dengue and West Nile Virus Protease Inhibitors Containing a 4-Benzyloxyphenylglycine Residue
Behnam, Mira A. M.,Graf, Dominik,Bartenschlager, Ralf,Zlotos, Darius P.,Klein, Christian D.
, p. 9354 - 9370 (2015/12/23)
The dengue virus (DENV) and West Nile Virus (WNV) NS2B-NS3 proteases are attractive targets for the development of dual-acting therapeutics against these arboviral pathogens. We present the synthesis and extensive biological evaluation of inhibitors that