205652-98-8Relevant articles and documents
S-substituted 3,5-dinitrophenyl 1,3,4-oxadiazole-2-thiols and tetrazole-5-thiols as highly efficient antitubercular agents
Karabanovich, Galina,Něme?ek, Jan,Valá?ková, Lenka,Carazo, Alejandro,Kone?ná, Klára,Stola?íková, Ji?ina,Hrabálek, Alexandr,Pavli?, Oto,Pávek, Petr,Vávrová, Kate?ina,Roh, Jaroslav,Klime?ová, Věra
, p. 369 - 383 (2017)
Two new classes of antitubercular agents, namely 5-alkylsulfanyl-1-(3,5-dinitrophenyl)-1H-tetrazoles and 2-alkylsulfanyl-5-(3,5-dinitrophenyl)-1,3,4-oxadiazoles, and their structure-activity relationships are described. These compounds possessed excellent activity against Mycobacterium tuberculosis, including the clinically isolated multidrug (MDR) and extensively drug-resistant (XDR) strains, with no cross resistance with first or second-line anti-TB drugs. The minimum inhibitory concentration (MIC) values of the most promising compounds reached 0.03 μM. Furthermore, these compounds had a highly selective antimycobacterial effect because they were completely inactive against 4 gram positive and 4 gram negative bacteria and eight fungal strains and had low in vitro toxicity for four mammalian cell lines, including hepatic cell lines HepG2 and HuH7. Although the structure-activity relationship study showed that the presence of two nitro groups is highly beneficial for antimycobacterial activity, the analogues with a trifluoromethyl group instead of one of the nitro groups maintained a high antimycobacterial activity, which indicates the possibility for further structural optimization of this class of antitubercular agents.
Design and optimization of N-acylhydrazone pyrimidine derivatives as E. coli PDHc E1 inhibitors: Structure-activity relationship analysis, biological evaluation and molecular docking study
He, Haifeng,Xia, Hongying,Xia, Qin,Ren, Yanliang,He, Hongwu
, p. 5652 - 5661 (2017/10/09)
By targeting the thiamin diphosphate (ThDP) binding site of Escherichia coli (E. coli) pyruvate dehydrogenase multienzyme complex E1 (PDHc E1), a series of novel ‘open-chain’ classes of ThDP analogs A, B, and C with N-acylhydrazone moieties was designed and synthesized to explore their activities against E. coli PHDc E1 in vitro and their inhibitory activity against microbial diseases were further evaluated in vivo. As a result, A1–23 exhibited moderate to potent inhibitory activities against E. coli PDHc E1 (IC50 = 0.15–23.55 μM). The potent inhibitors A13, A14, A15, C2, had strong inhibitory activities with IC50 values of 0.60, 0.15, 0.39 and 0.34 μM against E. coli PDHc E1 and with good enzyme-selective inhibition between microorganisms and mammals. Especially, the most powerful inhibitor A14 could 99.37% control Xanthimonas oryzae pv. Oryzae. Furthermore, the binding features of compound A14 within E. coli PDHc E1 were investigated to provide useful insights for the further construction of new inhibitor by molecular docking, site-directed mutagenesis, and enzymatic assays. The results indicated that A14 had most powerful inhibition against E. coli PDHc E1 due to the establishment of stronger interaction with Glu571, Met194, Glu522, Leu264 and Phe602 at active site of E.coli PDHc E1. It could be used as a lead compound for further optimization, and may have potential as a new microbicide.