22241-38-9Relevant articles and documents
Unlocking the Accessibility of Alkyl Radicals from Boronic Acids through Solvent-Assisted Organophotoredox Activation
Ranjan, Prabhat,Pillitteri, Serena,Coppola, Guglielmo,Oliva, Monica,Van der Eycken, Erik V.,Sharma, Upendra K.
, p. 10862 - 10870 (2021/09/08)
Despite their prevalence in organic synthesis, the application of boronic acids (BAs) as alkyl radical precursors in visible-light-assisted photocatalyzed reactions has been limited by their high oxidation potential. This study demonstrates the prominent
Ruthenium catalyzed β-selective alkylation of vinylpyridines with aldehydes/ketonesviaN2H4mediated deoxygenative couplings
Lv, Leiyang,Li, Chao-Jun
, p. 2870 - 2875 (2021/03/14)
Umpolung (polarity reversal) tactics of aldehydes/ketones have greatly broadened carbonyl chemistry by enabling transformations with electrophilic reagents and deoxygenative functionalizations. Herein, we report the first ruthenium-catalyzed β-selective alkylation of vinylpyridines with both naturally abundant aromatic and aliphatic aldehyde/ketonesviaN2H4mediated deoxygenative couplings. Compared with one-electron umpolung of carbonyls to alcohols, this two-electron umpolung strategy realized reductive deoxygenation targets, which were not only applicable to the regioselective alkylation of a broad range of 2/4-alkene substituted pyridines, but also amenable to challenging 3-vinyl and steric-embedded internal pyridines as well as their analogous heterocyclic structures.
Remote Oxidation of Aliphatic C-H Bonds in Nitrogen-Containing Molecules
Howell, Jennifer M.,Feng, Kaibo,Clark, Joseph R.,Trzepkowski, Louis J.,White, M. Christina
supporting information, p. 14590 - 14593 (2015/12/08)
Nitrogen heterocycles are ubiquitous in natural products and pharmaceuticals. Herein, we disclose a nitrogen complexation strategy that employs a strong Bronsted acid (HBF4) or an azaphilic Lewis acid (BF3) to enable remote, non-directed C(sp3)-H oxidations of tertiary, secondary, and primary amine- and pyridine-containing molecules with tunable iron catalysts. Imides resist oxidation and promote remote functionalization.
BIS-PYRIDINIUM COMPOUNDS
-
Page/Page column 24, (2008/06/13)
A method of treating, inhibiting, or preventing an infection in a subject is described. The method comprises administering to the subject an effective amount of at least one bis-pyridinium compound. The bis-pyridinium compound comprises two aromatic ring structures. Each of the ring structures comprises a pyridine ring, and the ring structures are linked by a linker group of at least 8 atoms in length, said linker group being attached to the nitrogen atoms of the pyridine rings. At least one substituent on at least one of the ring structures is an alkyl group having at least 2 carbon atoms, and no substituent on either of the ring structures is -OH, -SH or an amine group.